Biochemie in der Mikrowelle – Einsatz der Mikrowelle zur Synthese und Analytik von Peptden und Proteinen, A. Rybka und U. Sengutta, GIT 9, 572-575 (2009)
Biochemie_GIT
Biochemie in der Mikrowelle. Synthestrategien von Peptoiden, S. Vollrath und S. Bräse, Labor & More, 2-6, September 2013
Braese
Analyse von Aminosäuren, Proteinen und Nitroderivaten in atmosphärischen Aerosolen und Straßenstaub“, Promotion Tobias Fehrenbach, TU München 2006
Proteinhydrolyse
In der organischen Synthese war der Einsatz von Mikrowellengeräten lange Zeit eine „exotische“ Anwendung – das Ölbad mit dem Rundkolben blieb Standardequipment. Der Grund hierfür war einfach: Anfängliche Synthese-Versuche in umfunktionierten Haushaltgeräten oder in modifizierten Aufschlussgeräten scheiterten an der zu geringen Energiedichte, an der gepulsten Mikrowelleneinstrahlung, an der ungleichmäßigen Energieverteilung („Mikrowellen-Chaos“) und an der unzureichenden Sensortechnik um reproduzierbare Versuchsabläufe zu beschreiben. Nun steht aber auch für den Bereich der Life Sciences, der kombinatorischen Chemie und der allgemeinen organischen chemischen Synthese mit dem Discover eine neue Geräteplattform von Mikrowellensystemen zur Verfügung, die speziell für die Anforderungen der chemischen Synthese entwickelt wurden.
Warum eigentlich Mikrowellen-Synthese?
Mikrowellenunterstützte Synthesen ermöglichen den Synthese-Chemikern ganz neue Wege zum gewünschten Produkt (Wirkstoff). Mit einem Höchstmaß an Flexibilität und bisher nicht vorhandenen Kontrollmöglichkeiten der Reaktionsparameter ermöglicht die Mikrowellen-Chemie ein direktes Einkoppeln der Energie in die gewünschten Reaktionen. In kürzester Zeit wird die notwendige Aktivierungsenergie der Reaktion zugeführt, was sich in der Beschleunigung gegenüber traditionellen Reaktionsbedingungen niederschlägt. So sind Zeitverkürzungen um den Faktor 100 bis 1000 keine Seltenheit. Die mikrowellenunterstützte Synthese ist zweifelsfrei der schnellste und der produktivste Weg zum gewünschten Wirkstoff. Über 10.000 Literaturstellen mit stark zunehmender Tendenz berichten von den Möglichkeiten dieser Technologie.
„Fokussierte Mikrowellen-Synthese“ Ulf Sengutta, Hans-Peter Meier, GIT Band 9, 1038 – 1043 (2002)
„Mikrowellen-Synthesen unter Normaldruck“, H. Ritter, Nachrichten aus Chemie, Mai 2005
Mikrowellensynthese unter Normaldruck Ritter
„Entdecke die Möglichkeiten. Organische Synthesen in der Mikrowelle“, J. Theis und H. Ritter, GIT 3/2011, 170 – 173
Entdecke die Möglichkeiten organische_synthesen
„Wasserstoff wechsel dich!“, J. Theis, H, Ritter, Labor and More 04/12
Ritter Theis Wasserstoff wechsel dich
„Leuchtende Nanopartikel aus der Mikrowelle“, A. Mudring, CHEMIEXTRA 6, 2012, 4 – 8
Mudring_Leuchtende_Nanopartikel
„Hydroxyethylierung mit Ethylencarbonat“, F. Szillat, N. Retzmann und H. Ritter, GIT 8, 584 – 585 (2012)
Hydroxyethylierung_Ethylencarbonat
„Gase aus der Mikrowelle“ N. Retzmann, F. Szillat, H. Ritter, Laborpraxis 3, 64 – 65 (2012)
Gase_aus_der_Mikrowelle_Synthese
„Synthesemethoden: Sanfte Festkörperchemie“ Groh, Heise, Kaiser und Ruck, Nachrichten aus der Chemie, 26 – 29, 1, 2013
Synthesemethoden_Sanfte_Festkoerperchemie
„CO2 aus der Mikrowelle – Cyclische Carbonate mittels Backpulver in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, Laborpraxis 3, 28 – 29 (2013)
„Mikrowellentechnik im Labor – Destillation von Dicyclopentadien in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, GIT 3, 184 (2013)
„Metalle aus der Mikrowelle. Eine leistungsstarke Methode“ M. Ruck und M. Heise, GIT 4, 246 – 247 (2013)
„Getrennt und geschützt mit flüssigen Salzen“ Marquardt und Janiak, Nachrichten aus der Chemie, 754 – 757, 7, 2013
„Materialsynthesen nahe Raumtemperatur – Mit Niedertemperatursynthesen zu Nanolegierungen und neuen Materialien“ M. F. Groh, M. Heise und M. Ruck, GIT 6, 48 – 50 (2014)
Materialsynthesen_Raumtemperatur
„SO2 aus der Mikrowelle – Synthesegase im labormaßstab selbst erzeugen“ U. Lampe, F. Szillat und H. Ritter, Laborpraxis 12, 36 – 37 (2014)
„Acrylierte Phenole durch effiziente, lösemittelfreie Kondensation in der Mikrowelle“, Ulrich Lampe und Helmut Ritter, LaborPraxis 11, 36-38 2015
„Organische Synthesen in der Labormikrowelle – Von Duftestern und Aspirin“ Projektarbeit am Institut Dr. Flad, AutorInnen: Tobias Diener, Antonia Karina, Elena Lau und Selina Müller, CLB 9-10, 2015, 390-409
Mikrowellentechnik beschleunigt die Protein Hydrolyse
Die Protein Hydrolyse ist eine altbewährte Aufschlussprozedur aus den Fünfziger Jahren (Stein und Moore) von Proteinen und Peptiden zur Analyse der Aminosäuren. Mit der Aminosäure Analyse (AAA) erfolgt die Quantifizierung der einzelnen Aminosäuren der jeweiligen Probe und stellt eine Voraussetzung zur Identifikation der Aminosäuresequenz des Proteins/Peptids dar.
Lesen in dem Artikel „Operation of the CEM Discover SP Microwave Reaction System for Amino Acid Hydrolysis“ über den vorteilhaften Einsatz der Discover Mikrowelle zur Proteinhydrolyse
The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.
CEM und Intavis gehen gemeinsam neue Wege
Seit dem 01.03.2020 hat die Firma CEM die Produkte der Firma Intavis in ihr Produktportfolio übernommen.
Um unseren neuen Kunden die Zusammenarbeit weiter einfach zu machen, werden die Produkte beider Firmen unverändert weitergeführt. Auch die Wartung der Geräte bzw. die Reparatur der Geräte wird wie gewohnt stattfinden. Die Verbrauchsmaterialien und Ersatzteile sind nach wie vor erhältlich. Selbst die Ansprechpartner bleiben für unsere Kunden dieselben, nur unter neuen Telefonnummern oder E-Mailadressen.
Was sich für Sie ändert? Es steht Ihnen ein größeres Team an Produktspezialisten, Vertrieb und Service zur Verfügung.
Schnelle und einfache MOSH/MOAH Analytik in der Mars 6 Mikrowelle
Mineralöle kommen in unserer Umwelt nahezu überall vor. Ihre Bestandteile können auf ganz unterschiedlichen Wegen sowohl in pflanzliche als auch in tierische Lebensmittel gelangen. Betrachtet man ihre chemische Struktur, so handelt es sich dabei im Wesentlichen um gesättigte Mineralölkohlenwasserstoffe (MOSH) und zu einem geringeren Anteil um aromatische Mineralölkohlenwasserstoffe (MOAH).
Mit den Abkürzungen MOSH und MOAH werden zwei unterschiedliche Gruppen chemischer Verbindungen bezeichnet, die im Mineralöl vorkommen. MOSH steht dabei für englisch Mineral Oil Saturated Hydrocarbons (Gesättigte Mineralölkohlenwasserstoffe), MOAH für englisch Mineral Oil Aromatic Hydrocarbons (Aromatische Mineralölkohlenwasserstoffe).
Beide werden leicht aus Lebensmitteln in den Körper aufgenommen und können sich im Körperfett sowie in einigen Organen anreichern. Ableitungen zur toxikologischen Bewertung werden aus Tierversuchen getroffen, weil derzeit keine Studien über die Effekte auf den Menschen vorliegen. Die Aufnahme von MOAH sollte nach Ansicht des Bundesinstituts für Risikobewertung (BfR) gänzlich vermieden werden, da nicht auszuschließen ist, dass in dieser Fraktion auch krebserregende Verbindungen vorkommen.
Mineralöle setzen sich im Wesentlichen aus zwei chemisch und strukturell unterschiedlichen Fraktionen zusammen. Die Hauptfraktion besteht zu einem Anteil von 75 bis 85 % aus so genannten MOSH (Mineral Oil Saturated Hydrocarbons), bei der kleineren Fraktion mit einem relativen Anteil von 15 bis 25 % handelt es sich um so genannte MOAH (Mineral Oil Aromatic Hydrocarbons). Beide Fraktionen bestehen aus Kohlen-stoffketten mit meist weniger als 25 Kohlenstoff-atomen (<C25). MOSH sind gesättigte paraffinartige, d. h. offenkettige, meist verzweigte und naphtenartige (zyklische) Kohlenwasserstoffe mit niedriger bis mittlerer Viskosität. Bei MOAH handelt es sich um eine große Zahl verschiedener aromatischer Kohlenwasserstoffe, die überwiegend aus einem bis vier Ringsystemen bestehen und bis zu 97 % alkyliert sind
Beide Stoffgruppen werden in Lebensmitteln und Kosmetika untersucht.
Der analytische Nachweis und die quantitative Bestimmung der MOSH- und MOAH-Fraktion erfolgt als Summenparameter. Hierfür werden die Proben mit n-Hexan extrahiert und der Extrakt mit gekoppelter HPLC-GC mit Flammenionisationsdetektor oder massenspektrometrischem Detektor analysiert. Vorher wird noch ein Verseifungsschritt mit KOH vorgeschaltet. Die herkömmliche nasschemische Probenvorbereitung der Verseifung und Lösemittelextraktion ist arbeitsaufwändig und zeitintensiv. Als schnelle und einfache Alternative mit hohem Probendurchsatz in kurzer Zeit wurde ein Verfahren in der Mars 6 Mikrowelle mit speziell entwickelten Reaktionsbehältern entwickelt.
In nur 20 min. erfolgen nun mit Hilfe einer speziellen Rührtechnik die Verseifung und die Lösemittel-Extraktion.
Dabei ist die Temperaturmessung ein entscheidender Parameter für die Richtigkeit und Reproduzierbarkeit. Die im Mars 6 eingebaute iWave Temperatursensorik misst berührungslos durch verschiedene Materialien wie z. B. Hostaflon TFM und Glas die Probentemperatur der Proben.
Sehen Sie selbst die MOSH/MOAH Probenvorbereitung in diesem Film
Möchten Sie die MOSH/MOAH Probenvorbereitung mit Ihrer Chromatographie koppeln? Ein vollautomatischer Autosampler bedient die Mikrowelle sowie die GC.
Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose
Schnelle und effiziente chemische Synthese in der Mikrowelle
A systematic investigation of the interaction of microwave irradiation with microcrystalline cellulose has been carried out, covering a broad temperature range (150 → 270 °C). A variety of analytical techniques (e.g., HPLC, 13C NMR, FTIR, CHN analysis, hydrogen–deuterium exchange) allowed for the analysis of the obtained liquid and solid products. Based on these results a mechanism of cellulose interaction with microwaves is proposed. Thereby the degree of freedom of the cellulose enclosed CH2OH groups was found to be crucial. This mechanism allows for the explanation of the different experimental observations such as high efficiency of microwave treatment; the dependence of the selectivity/yield of glucose on the applied microwave density; the observed high glucose to HMF ratio; and the influence of the degree of cellulose crystallinity on the results of the hydrolysis process. The highest selectivity toward glucose was found to be ∼75% while the highest glucose yield obtained was 21%.
Lesen Sie den kompletten Artikel