Tag: Mikrowelle

Biochemie in der Mikrowelle – Einsatz der Mikrowelle zur Synthese und Analytik von Peptden und Proteinen, A. Rybka und U. Sengutta, GIT 9, 572-575 (2009)
Biochemie_GIT

 

Biochemie in der Mikrowelle. Synthestrategien von Peptoiden, S. Vollrath und S. Bräse, Labor & More, 2-6, September 2013
Braese

 

Analyse von Aminosäuren, Proteinen und Nitroderivaten in atmosphärischen Aerosolen und Straßenstaub“, Promotion Tobias Fehrenbach, TU München 2006
Proteinhydrolyse

In der organischen Synthese war der Einsatz von Mikrowellengeräten lange Zeit eine „exotische“ Anwendung – das Ölbad mit dem Rundkolben blieb Standardequipment. Der Grund hierfür war einfach: Anfängliche Synthese-Versuche in umfunktionierten Haushaltgeräten oder in modifizierten Aufschlussgeräten scheiterten an der zu geringen Energiedichte, an der gepulsten Mikrowelleneinstrahlung, an der ungleichmäßigen Energieverteilung („Mikrowellen-Chaos“) und an der unzureichenden Sensortechnik um reproduzierbare Versuchsabläufe zu beschreiben. Nun steht aber auch für den Bereich der Life Sciences, der kombinatorischen Chemie und der allgemeinen organischen chemischen Synthese mit dem Discover eine neue Geräteplattform von Mikrowellensystemen zur Verfügung, die speziell für die Anforderungen der chemischen Synthese entwickelt wurden.

Warum eigentlich Mikrowellen-Synthese?
Mikrowellenunterstützte Synthesen ermöglichen den Synthese-Chemikern ganz neue Wege zum gewünschten Produkt (Wirkstoff). Mit einem Höchstmaß an Flexibilität und bisher nicht vorhandenen Kontrollmöglichkeiten der Reaktionsparameter ermöglicht die Mikrowellen-Chemie ein direktes Einkoppeln der Energie in die gewünschten Reaktionen. In kürzester Zeit wird die notwendige Aktivierungsenergie der Reaktion zugeführt, was sich in der Beschleunigung gegenüber traditionellen Reaktionsbedingungen niederschlägt. So sind Zeitverkürzungen um den Faktor 100 bis 1000 keine Seltenheit. Die mikrowellenunterstützte Synthese ist zweifelsfrei der schnellste und der produktivste Weg zum gewünschten Wirkstoff. Über 10.000 Literaturstellen mit stark zunehmender Tendenz berichten von den Möglichkeiten dieser Technologie.

 

„Fokussierte Mikrowellen-Synthese“ Ulf Sengutta, Hans-Peter Meier, GIT Band 9, 1038 – 1043 (2002)

MW_Synthese

„Mikrowellen-Synthesen unter Normaldruck“, H. Ritter, Nachrichten aus Chemie, Mai 2005

Mikrowellensynthese unter Normaldruck Ritter

„Entdecke die Möglichkeiten. Organische Synthesen in der Mikrowelle“, J. Theis und H. Ritter, GIT 3/2011, 170 – 173

Entdecke die Möglichkeiten organische_synthesen

„Wasserstoff wechsel dich!“, J. Theis, H, Ritter, Labor and More 04/12

Ritter Theis Wasserstoff wechsel dich

„Leuchtende Nanopartikel aus der Mikrowelle“, A. Mudring, CHEMIEXTRA 6, 2012, 4 – 8

Mudring_Leuchtende_Nanopartikel

„Hydroxyethylierung mit Ethylencarbonat“, F. Szillat, N. Retzmann und H. Ritter, GIT 8, 584 – 585 (2012)

Hydroxyethylierung_Ethylencarbonat

„Gase aus der Mikrowelle“ N. Retzmann, F. Szillat, H. Ritter, Laborpraxis 3, 64 – 65 (2012)

Gase_aus_der_Mikrowelle_Synthese

„Synthesemethoden: Sanfte Festkörperchemie“ Groh, Heise, Kaiser und Ruck, Nachrichten aus der Chemie, 26 – 29, 1, 2013

Synthesemethoden_Sanfte_Festkoerperchemie

„CO2 aus der Mikrowelle – Cyclische Carbonate mittels Backpulver in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, Laborpraxis 3, 28 – 29 (2013)

CO2 aus der Mikrowelle

„Mikrowellentechnik im Labor – Destillation von Dicyclopentadien in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, GIT 3, 184 (2013)

Destillation in der MW

„Metalle aus der Mikrowelle. Eine leistungsstarke Methode“ M. Ruck und M. Heise, GIT 4, 246 – 247 (2013)

Metalle_Mikrowelle_GIT42013

„Getrennt und geschützt mit flüssigen Salzen“ Marquardt und Janiak, Nachrichten aus der Chemie, 754 – 757, 7, 2013

Getrennt_geschuetzt

„Materialsynthesen nahe Raumtemperatur – Mit Niedertemperatursynthesen zu Nanolegierungen und neuen Materialien“ M. F. Groh, M. Heise und M. Ruck, GIT 6, 48 – 50 (2014)

Materialsynthesen_Raumtemperatur

„SO2 aus der Mikrowelle – Synthesegase im labormaßstab selbst erzeugen“ U. Lampe, F. Szillat und H. Ritter, Laborpraxis 12, 36 – 37 (2014)

SO2 aus der Mikrowelle

„Acrylierte Phenole durch effiziente, lösemittelfreie Kondensation in der Mikrowelle“, Ulrich Lampe und Helmut Ritter, LaborPraxis 11, 36-38 2015

Acrylierte Phenole Mikrowelle

„Organische Synthesen in der Labormikrowelle – Von Duftestern und Aspirin“ Projektarbeit am Institut Dr. Flad, AutorInnen: Tobias Diener, Antonia Karina, Elena Lau und Selina Müller, CLB 9-10, 2015, 390-409

Organische_Synthesen_Labormikrowelle

mehr zur Mikrowellen-Synthese

 

Bessere Analyseergebnisse beginnen mit einer besseren Probenvorbereitung. Aufgrund der Komplexität der Cannabispflanze kann eine vollständige und zuverlässige Analyse schwierig sein. Der erste Schritt zu jeder Analyse besteht darin, einen vollständigen Aufschluss oder eine vollständige Extraktion in der Probenvorbereitung sicherzustellen. In diesem Webcast lernen Sie Techniken und Werkzeuge für eine schnelle, effiziente und reproduzierbare Probenvorbereitung für alle Ihre LC-MS-, GC-MS- und ICP-MS-Analysen von Cannabis- und Hanfproben kennen. Diskussionen über die Methoden und Techniken zur Extraktion von Pestiziden und THC aus Pflanzenmaterial und zum Mikrowellenaufschluss von gemischten Proben, einschließlich Blumen, Lebensmitteln, Lotionen, Extrakten und Ölen, werden angesprochen. Darüber hinaus werden wertvolle Probenhandhabungstechniken zur Erzielung einer konsistenteren und homogeneren Probenahme sowie Vergleiche zwischen klassischen und automatisierten Techniken sowie Optionen für niedrigen und hohen Durchsatz behandelt.   Wichtige Lernziele: Lernen Sie einfache und wiederholbare Probenvorbereitungstechniken für Cannabis und Hanfprodukte Verstehen Sie die Bedeutung temperaturkontrollierter Potenz- und Pestizidextraktionen durch Filtration und Kühlung Best Practices für die Mikrowellenverdauung in einer Charge aller Cannabis- und Hanfproben, einschließlich Blumen, Lebensmittel, Lotionen, Öle und Extrakte.

www.loesemittel-extraktion.de

 

Mikrowellentechnik beschleunigt die Protein Hydrolyse

Die Protein Hydrolyse ist eine altbewährte Aufschlussprozedur aus den Fünfziger Jahren (Stein und Moore) von Proteinen und Peptiden zur Analyse der Aminosäuren. Mit der Aminosäure Analyse (AAA) erfolgt die Quantifizierung der einzelnen Aminosäuren der jeweiligen Probe und stellt eine Voraussetzung zur Identifikation der Aminosäuresequenz des Proteins/Peptids dar.

Lesen in dem Artikel „Operation of the CEM Discover SP Microwave Reaction System for Amino Acid Hydrolysis“ über den vorteilhaften Einsatz der Discover Mikrowelle zur Proteinhydrolyse

715006455_Figure_08

Lesen Sie hier die Details…

 

The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.

Lesen Sie den gesamten Artikel

MARS6_Photos_Lab_47

Gemäß der Einleiterverordnungen müssen von kommunalen und industriellen Abwässern der Gehalt an abfiltrierbaren Stoffen AFS im Abwasser vermehrt gemessen werden.

Abfiltrierbare Stoffe (AFS) sind im Abwasser enthaltene Sink-, Schweb- und Schwimmstoffe und werden durch Filtration abgetrennt. Sie ergeben meist eine sichtbare Trübung. Ihr Gehalt wird in mg/l angegeben.

Die konventionelle Arbeitsweise beinhaltet viel manuelle Tätigkeit und einen hohen Zeitbedarf.

Die Filter werden bei der klassischen Arbeitsweise vorgetrocknet und im Exsikkator aufbewahrt, um sie vor Luftfeuchtigkeit zu schützen. Dann wird ein definiertes Volumen Abwasserprobe durch diesen Filter in der Nutsche filtriert. Der Filter enthält nun die Trübstoffe des Abwassers und wird typischerweise im Trockenschrank mehrere Stunden bis zur Gewichtskonstanz getrocknet. Die getrockneten Feststoffe auf dem Filter werden gewogen und mit dem abfiltrierten Volumen rechnerisch ins Verhältnis gesetzt. Diese klassische Arbeitsweg dauert viele Stunden und ist arbeitsintensiv.

Die schnelle Alternative im Smart 6:

SMART6_open_facingleft_CMYK

Die Mikrowellen-/Halogen-Trocknungswaage Smart 6 trocknet alle Arten von Substanzen und Filter in nur 2 Minuten bis zur Gewichtskonstanz. Diese Technik kann nicht nur zur Trocknung von Schlämmen eingesetzt werden, sondern auch zur Bestimmung der abfiltrierbaren Stoffe im Abwasser. Die Filter können direkt aus der Packung eingesetzt werden – das Vortrocknen erfolgt im Smart 6 binnen 5 Sekunden. Die Software im Smart 6 beinhaltet u. a. die Bestimmung der gelösten/suspendierten Feststoffe AFS (engl. Total Suspended Solids, TSS). Dabei wird ein definiertes Volumen (z. B. 1 l) der Wasserprobe filtriert und der Filter wird im Smart 6 innerhalb von 2 min. getrocknet. Am Trocknungsende errechnet das Smart 6 automatisch den TSS-Gehalt [mg/l], indem der gemessene Feststoffgehalt mit dem eingesetzten Volumen in Relation gesetzt wird.

Schneller und einfacher geht es nicht.

mehr Infos…

 

 

0

CEM und Intavis gehen gemeinsam neue Wege

Seit dem 01.03.2020 hat die Firma CEM die Produkte der Firma Intavis in ihr Produktportfolio übernommen.

Um unseren neuen Kunden die Zusammenarbeit weiter einfach zu machen, werden die Produkte beider Firmen unverändert weitergeführt. Auch die Wartung der Geräte bzw. die Reparatur der Geräte wird wie gewohnt stattfinden. Die Verbrauchsmaterialien und Ersatzteile sind nach wie vor erhältlich. Selbst die Ansprechpartner bleiben für unsere Kunden dieselben, nur unter neuen Telefonnummern oder E-Mailadressen.

Was sich für Sie ändert? Es steht Ihnen ein größeres Team an Produktspezialisten, Vertrieb und Service zur Verfügung.

 

 

Our president and CEO, Dr. Mike Collins, has been recognized for his outstanding service and contribution to the development of Polish chemistry by the Polish Chemical Society. Dr. Collins received his award at the Polish Chemical Society’s 100th-anniversary celebration at Warsaw University of Technology. Along with his award, a presentation was given in his honor that focused on a historical perspective of microwave technology and how it has transformed the world of chemistry.

Schnelle und einfache MOSH/MOAH Analytik in der Mars 6 Mikrowelle

Mineralöle kommen in unserer Umwelt nahezu überall vor. Ihre Bestandteile können auf ganz unterschiedlichen Wegen sowohl in pflanzliche als auch in tierische Lebensmittel gelangen. Betrachtet man ihre chemische Struktur, so handelt es sich dabei im Wesentlichen um gesättigte Mineralölkohlenwasserstoffe (MOSH) und zu einem geringeren Anteil um aromatische Mineralölkohlenwasserstoffe (MOAH).

Mit den Abkürzungen MOSH und MOAH werden zwei unterschiedliche Gruppen chemischer Verbindungen bezeichnet, die im Mineralöl vorkommen. MOSH steht dabei für englisch Mineral Oil Saturated Hydrocarbons (Gesättigte Mineralölkohlenwasserstoffe), MOAH für englisch Mineral Oil Aromatic Hydrocarbons (Aromatische Mineralölkohlenwasserstoffe).

Beide werden leicht aus Lebensmitteln in den Körper aufgenommen und können sich im Kör­perfett sowie in einigen Organen anreichern. Ab­leitungen zur toxikologischen Bewertung werden aus Tierversuchen getroffen, weil derzeit keine Studien über die Effekte auf den Menschen vor­liegen. Die Aufnahme von MOAH sollte nach Ansicht des Bundesinstituts für Risikobewer­tung (BfR) gänzlich vermieden werden, da nicht auszuschließen ist, dass in dieser Fraktion auch krebserregende Verbindungen vorkommen.

Mineralöle setzen sich im Wesentlichen aus zwei chemisch und strukturell unterschiedlichen Frak­tionen zusammen. Die Hauptfraktion besteht zu einem Anteil von 75 bis 85 % aus so genannten MOSH (Mineral Oil Saturated Hydrocarbons), bei der kleineren Fraktion mit einem relativen Anteil von 15 bis 25 % handelt es sich um so genannte MOAH (Mineral Oil Aromatic Hydrocarbons). Beide Fraktionen bestehen aus Kohlen-stoffketten mit meist weniger als 25 Kohlenstoff-atomen (<C25). MOSH sind gesättigte paraffinartige, d. h. offenkettige, meist verzweigte und naphtenartige (zyklische) Kohlenwasserstoffe mit niedriger bis mittlerer Viskosität. Bei MOAH handelt es sich um eine große Zahl verschiedener aromatischer Kohlenwasserstoffe, die überwiegend aus einem bis vier Ringsystemen bestehen und bis zu 97 % alkyliert sind

Beide Stoffgruppen werden in Lebensmitteln und Kosmetika untersucht.

Der analytische Nachweis und die quantitative Bestimmung der MOSH- und MOAH-Fraktion erfolgt als Summenparameter. Hierfür werden die Proben mit n-Hexan extrahiert und der Extrakt mit gekoppelter HPLC-GC mit Flammenionisationsdetektor oder massenspektrometrischem Detektor analysiert. Vorher wird noch ein Verseifungsschritt mit KOH vorgeschaltet. Die herkömmliche nasschemische Probenvorbereitung der Verseifung und Lösemittelextraktion ist arbeitsaufwändig und zeitintensiv. Als schnelle und einfache Alternative mit hohem Probendurchsatz in kurzer Zeit wurde ein Verfahren in der Mars 6 Mikrowelle mit speziell entwickelten Reaktionsbehältern entwickelt.

GreenChem Behälter im Mars

In nur 20 min. erfolgen nun mit Hilfe einer speziellen Rührtechnik die Verseifung und die Lösemittel-Extraktion.

Rührung

Dabei ist die Temperaturmessung ein entscheidender Parameter für die Richtigkeit und Reproduzierbarkeit. Die im Mars 6 eingebaute iWave Temperatursensorik misst berührungslos durch verschiedene Materialien wie z. B. Hostaflon TFM und Glas die Probentemperatur der Proben.

2F395158

 

Die ausführlichen Daten wurden von Moret et al. veröffentlicht: „Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)–gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs”

Sehen Sie selbst die MOSH/MOAH Probenvorbereitung in diesem Film

 

Möchten Sie die MOSH/MOAH Probenvorbereitung mit Ihrer Chromatographie koppeln? Ein vollautomatischer Autosampler bedient die Mikrowelle sowie die GC.

FAMEs-solution_highresolution

GERSTEL_FAMEs_detail

 

 

 

Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose

Schnelle und effiziente chemische Synthese in der Mikrowelle

ja-2013-056273_0008

A systematic investigation of the interaction of microwave irradiation with microcrystalline cellulose has been carried out, covering a broad temperature range (150 → 270 °C). A variety of analytical techniques (e.g., HPLC, 13C NMR, FTIR, CHN analysis, hydrogen–deuterium exchange) allowed for the analysis of the obtained liquid and solid products. Based on these results a mechanism of cellulose interaction with microwaves is proposed. Thereby the degree of freedom of the cellulose enclosed CH2OH groups was found to be crucial. This mechanism allows for the explanation of the different experimental observations such as high efficiency of microwave treatment; the dependence of the selectivity/yield of glucose on the applied microwave density; the observed high glucose to HMF ratio; and the influence of the degree of cellulose crystallinity on the results of the hydrolysis process. The highest selectivity toward glucose was found to be ∼75% while the highest glucose yield obtained was 21%.

Lesen Sie den kompletten Artikel

J. Am. Chem. Soc.20131353211728-11731
Publication Date:July 29, 2013
https://doi.org/10.1021/ja4056273
Copyright © 2013 American Chemical Society

Unbenannt