Tag: Mikrowellenaufschluss Schwermetalle

HZG-Wissenschaftler entwickeln Verfahren zur Messung von Metall in Mikroplastik

Über die Anreicherung und den Transport persistenter organischer Schadstoffe durch Mikroplastik gibt es vergleichsweise viele Studien. Doch die Daten über die Anreicherung von für die Umwelt giftigen Metallen sind sehr rar und bisweilen wissenschaftlich unzuverlässig. Ein Team aus Wissenschaftlern des Helmholtz-Zentrums Geesthacht – Zentrum für Material- und Küstenforschung (HZG) hat jetzt gemeinsam mit Kollegen der Bundesanstalt für Gewässerkunde und der Christian-Albrechts-Universität zu Kiel (CAU) ein Verfahren entwickelt, mit dem entsprechende Metalle in Mikroplastik zuverlässig nachgewiesen werden können.

20200827140341_00001

Metalle aus der Plastikproduktion und der Umwelt nachweisbar

Probengefäß

In diesen Gefäßen werden die Proben aufbereitet und anschließend den Mikrowellen ausgesetzt. Danach werden die Materialien mit einem Massenspektrometer untersucht. Foto: HZG/Steffen Niemann

Mit dem neuen Verfahren können in den Mikroplastikpartikeln sowohl die Metalle nachgewiesen werden, die in der Plastikproduktion eingesetzt werden, als auch jene, die aus der Umwelt, beispielsweise aus Meerwasser, an die Partikel gebunden werden können. Zum Beispiel wird das Halbmetall Antimon oft als Katalysator für die Produktion von PET eingesetzt und ist dementsprechend im Plastik selbst zu finden. Schwermetalle wie Cadmium und Blei, die für viele Organismen giftig sind, können ebenfalls durch die Produktion enthalten sein, aber auch aus der Umwelt an die Oberfläche der Partikel gebunden werden.

Lesen Sie hier den detaillierten Artikel

https://www.hzg.de/public_relations_media/news/086784/index.php.de

 

Bessere Analyseergebnisse beginnen mit einer besseren Probenvorbereitung. Aufgrund der Komplexität der Cannabispflanze kann eine vollständige und zuverlässige Analyse schwierig sein. Der erste Schritt zu jeder Analyse besteht darin, einen vollständigen Aufschluss oder eine vollständige Extraktion in der Probenvorbereitung sicherzustellen. In diesem Webcast lernen Sie Techniken und Werkzeuge für eine schnelle, effiziente und reproduzierbare Probenvorbereitung für alle Ihre LC-MS-, GC-MS- und ICP-MS-Analysen von Cannabis- und Hanfproben kennen. Diskussionen über die Methoden und Techniken zur Extraktion von Pestiziden und THC aus Pflanzenmaterial und zum Mikrowellenaufschluss von gemischten Proben, einschließlich Blumen, Lebensmitteln, Lotionen, Extrakten und Ölen, werden angesprochen. Darüber hinaus werden wertvolle Probenhandhabungstechniken zur Erzielung einer konsistenteren und homogeneren Probenahme sowie Vergleiche zwischen klassischen und automatisierten Techniken sowie Optionen für niedrigen und hohen Durchsatz behandelt.   Wichtige Lernziele: Lernen Sie einfache und wiederholbare Probenvorbereitungstechniken für Cannabis und Hanfprodukte Verstehen Sie die Bedeutung temperaturkontrollierter Potenz- und Pestizidextraktionen durch Filtration und Kühlung Best Practices für die Mikrowellenverdauung in einer Charge aller Cannabis- und Hanfproben, einschließlich Blumen, Lebensmittel, Lotionen, Öle und Extrakte.

www.loesemittel-extraktion.de

Our president and CEO, Dr. Mike Collins, has been recognized for his outstanding service and contribution to the development of Polish chemistry by the Polish Chemical Society. Dr. Collins received his award at the Polish Chemical Society’s 100th-anniversary celebration at Warsaw University of Technology. Along with his award, a presentation was given in his honor that focused on a historical perspective of microwave technology and how it has transformed the world of chemistry.

CEM hat dünnwandige Glas- und Quarzeinsätze entwickelt, die im Mikrowellen-Aufschlussgerät Mars 6 den Aufschluss von Proben noch mehr vereinfachen als mit den bisherigen Behältertechnologien. Diese MiniClave Gefäße werden mit einem patentierten Stopfen verschlossen und schon geht es los.

Bild2

Das Behältermaterial lädt sich nicht statisch auf, was in der Praxis einen deutlichen Vorteil mit sich bringt. Das Problem der statischen Aufladung wird beim einwiegen von feinpulverisierten Proben unterbunden. Zudem können die Aufschlusslösungen nach der Entnahme im Mars 6 direkt im durchsichtigen Glas-/Quarzeinsatz auf das Nennvolumen aufgefüllt werden. Das Überführen in externe Messkölbchen entfällt und damit auch die Gefahr von Verunreinigungen der Proben. Der besondere Clou: Die nun aufgefüllten Gläschen können direkt in den ICP-Autosampler eingesetzt werden. Damit verbleibt die Probe von der Einwaage bis zur Messung im selben Gefäß.

Bild3

Nach Messende können die MiniClave Gefäße in der Spülmaschine gespült werden. Bei starker Verschmutzung können die preiswerten Glaseinsätze auch entsorgt werden. Somit werden zeit- und geldsparend die Königswasser-Aufschlüsse von Boden und Klärschlämmen, Aufschlüsse von Kunststoffabfall, etc. und Lösemittelextraktionen durchgeführt. Bis zu 24 Proben können mit diesen Glas-/Quarzeinsätzen in nur 30 min. aufgeschlossen werden. Im Gegensatz zu vielen anderen Autoklaven-Technologien kann im MiniClave auch mit HCl gearbeitet werden.

Video: So funktioniert die neue Technik

Video: Von der Einwaage bis zur Messung im selben Aufschlussgefäß

 

 

Schwermetallverunreinigung von scharfer Salsa Soße und Chilipulver

Der Verbrauch von botanischen Produkten hat in den letzten zwei Jahrzehnten deutlich zugenommen, da die Verbraucher immer mehr zu natürlichen und hochwertigen botanischen Produkten tendieren. Die Hauptanbauregionen der Gewürz- und Teeproduktion auf der ganzen Welt weisen aber weniger strenge Sicherheits- und Qualitätsstandards als in der EU und in den USA auf. Es wurde festgestellt, dass Produkte aus diesen Regionen eine Vielzahl von Verfälschungen und Verunreinigungen enthalten, einschließlich Schwermetallen und toxische Elementen. Für eine Untersuchung wurde diverse Gewürze scharfe Saucen in unterschiedlichsten Märkten gekauft. Nach dem kryogenen Vermahlen und Mikrowellenaufschluß wurden die messfertigen Proben mittels ICP-MS auf ihre Schwermetallkontamination hin untersucht.

Probenvorbereitung

Die Proben wurden mit einem CEM Mars 5 Mikrowellen-Druckaufschlussgerät aufgeschlossen:

· Easy Prep Gefäße und XP Gefäße

· 0,2 g Probe · 10 ml HNO3

· 1-2 Tropfen HF bei Proben mit hohem Siliciumdioxidgehalt

· 15 Minuten Rampe bis 210 ° C · 15 Minuten halten

IMG_1960

Materialien

SPEX CertiPrep-Standards:

– CLMS-1, CLMS-2, CLMS-3, CLMS-4 (Multi-Element-Lösungsstandards 1-4)

Reagenzien:

– Hochreine Salpetersäure

– Hochreine HF

 

Analyse

Agilent ICP-MS 7700:

– Meinhard Zerstäuber
Ergebnisse Das am häufigsten vorkommende Schwermetall für die roten Pfefferprodukte war Chrom, das in einer Chillipulver Probe bis zu 7 pg/g aufwies. Die Gehalte an Chrom reichten von 3,1 bis 7,0 pg/g. Arsen und Cadmium waren in derselben Probe enthalten, das die höchsten Chromwerte aufwies (1,2 pg/g Cd & 0,4 pg/g As). Blei wurde in dieser Probe mit weniger als 1 pg/g gefunden. Detailergebnisse in Abbildungen 1 – 3

 

Mikrowellen Aufschluss von Chili Pulver 1

Mikrowellen Aufschluss von Chili Pulver 2

In dieser Methodensammlung finden Sie 308 Aufschluss Methoden aus den Bereichen

Landwirtschaft,

Lebensmittel,

Öle,

Kunststoffe,

Abfall,

Abwasser,

Umwelt,

Geologie und Mineralogie,

Gebrauchsgegenstände,

klinische und biologische Proben,

Materialwissenschaften,

Metallurgie und Legierungen,

Farben und Beschichtungen,

Kosmetik,

Pharma und Biotech,

Filter und Emissionsschutz

zum Mikrowellen-Aufschluss im Mars 6

Aufschlussmethoden Mikrowellenaufschluss Mars 6

Methodensammlung (pdf): MetNote_MARS6_Compendium

Unter der Probenvorbereitung versteht man die Aufarbeitung der zu analysierenden Probe in eine für die Bestimmung der relevanten Substanz geeigneten Form. In der Analytik kommt den atomspektroskopischen Bestimmungsmethoden (AAS, ICP-OES, ICP-MS) eine große Be­deutung zu. Es ist jedoch erforderlich, daß die Probensubstanz in Lösung vorliegt. Aus diesem Grund folgt dem Homogenisieren und Trocknen fester Proben ein Aufschlussprozess. Das Ergebnis sollte eine vollständige Matrixzersetzung sein, bei dem Verluste des Analyten verhindert werden und dieser nachher unter Umständen nach Entfernung der Matrixelemente störungsfrei bestimmt werden kann. Bei den Aufschlußmethoden kann zwischen naßchemische Aufschlüssen, Schmelzaufschlüssen und Aufschlüssen durch Gasreaktion unterschieden werden. Die zu verwendende Aufschlußmethode wird je nach Erfordernis der Bestimmungsmethode ausgewählt.

Bei einem naßchemischen Aufschluß wird die feste Probensubstanz in Wasser, Säuren oder Säuregemischen gelöst. Dies kann sowohl in offenen als auch in geschlosse­nen Behältnissen durchgeführt werden.

Oftmals ist ein rückstandsfreies Lösen komplexer Matrizes jedoch nicht erreichbar, da die Aufschlusstemperatur unter Atmosphärendruck durch die Siedetemperatur des verwende­ten Lösungsmittels begrenzt ist. Als Alternative bieten sich sogenannte Druckaufschlüsse in statisch geschlossenen Systemen an, mit denen Aufschlüsse meistens mit Säuren unter drastischen Bedingungen durchgeführt werden können. Bedingt durch den höheren Druck stellt sich eine höhere Siedetemperatur ein, welches mit einer stärkeren Oxidationskraft der Aufschlusssäure einhergeht. Zudem werden Spurenverluste und Kontaminationen von außen vermieden. Druckaufschlüsse können nach der Art der Wärmeübertragung an die Aufschlußlösung un­terschieden werden. Man unterscheidet die konvektive Wärmeübertragung und die Einwir­kung von Mikrowellen, welche völlig unterschiedlichen Prinzipien unterliegen. Bei der konventionellen Aufheizung mit Heizplatten, Öfen oder metallischen Heizblocks, wird die Wärmeenergie von der geheizten Gefäßwand an die Lösung abgegeben, wo der Wär­meaustausch über Konvektion stattfand. Diese Übertragung ist nicht sonderlich effektiv, da die Energie nur über die im Verhältnis zur Masse kleinen Oberfläche abgegeben wird. Dies führt zu den langen Aufheizphasen bei der konventionellen Druckaufschlusstechnik.

 

Die Wärmeübertragung basiert auf der Wechselwirkung der elektromagnetischen Strah­lung mit heteropolaren Molekülen und ist umso stärker je größer das Dipolmoment bzw. das Dielektrikum der Stoffe ist. Es könnte so verstanden werden, daß die Mikrowellenenergie zum einen eine Rotations- und Schwingungsbewegung der Dipole und zum anderen eine be­schleunigte Bewegung von Ionen mit einer Zunahme der Stoßzahlen in der Aufschlußlö­sung fördert.

Dipolrotation

Bild1

 

Ionenleitung

Bild2

Es können jedoch nur ioni­sche oder polare Substanzen mit Hilfe der Mikrowellentechnik aufgeheizt werden. Mikro­wellentransparente Stoffe können, soweit sie chemisch resistent sind als Gefäßmaterialien verwandt werden. Ein Maß für die Ab­sorption von Mikrowellenenergie ist der sogenannte Dissipationsfaktor tan d, welcher den Vergleich von dialektischen Verlust  zur Dielektrizitätskonstante  darstellt. In der folgenden Tabelle ist ein Vergleich der Dissipationsfaktoren für verschiedene Aufschlußsäuren und Ge­fäßmaterialien wiedergegeben.

 

Aufschlusssäuren und Gefäßmaterialien

 

Material/ Substanz Siedetemperatur [°C] Dissipations-faktor [tan d]
Wasser 100 157000
HCl (36%) 109,5 8600
HF (48%) 108 11000
HNO3 120 11000
H2SO4 (96%) 338 13500
PTFE 0,017
PFA 0,017
Quarz 0,005

 

Die geringen Mikrowellenabsorptionsraten machen PTFE-Derivate, PFA und Quarz zu bevorzugten Materialien für Druckaufschlusssysteme.

Dieser Film zeigt die Wirkungsweise der Mikrowellen auf den Aufschluss.

 

Ende Dezember 2014 hat die ICH auf ihrer Website die finale Version der ICH Q3D „Guideline for Elemental Impurities“ veröffentlicht. Die Leitlinie zu metallischen Verunreinigungen in Arzneimitteln ist als folgerichtige Ergänzung zu den Dokumenten ICH Q3A (Impurities in New Drug Substances), ICH Q3B (Impurities in New Drug Products) und ICH Q3C (Guideline for Residual Solvents) zu sehen. Diese neue Richtlinie erfordert einen Säureaufschluss der pharmazeutischen Proben, gefolgt von der spektrometrischen Messung der Elementgehalte.

CEM hat mit den neuen iPrep Hochtemperatur-Aufschlussbehältern im Mikrowellen-Druckaufschlussgerät Mars 6 iWave eine Neuentwicklung vorgestellt, die speziell für die Fragestellungen der Pharmaindustrie geeignet ist. Bei Temperaturen von bis zu 300 °C können in kurzer Zeit schwierige aromatische Ringstrukturen restkohlenstofffrei aufgeschlossen werden. Außerdem können extrem hohe Einwaagen von kohlenstoffreichen Proben, wie z. B. Fischölkapseln von bis zu 2 g problemlos im iPrep/Mars 6iWave aufgeschlossen werden.

Diese Applikationsbeschreibung erläutert diese neuartige Technologie und ihre Möglichkeiten.

ApNote_MARS6_iPrep_Difficult_API

 

Mars6_iWave iPrep

CEM stellt diese neue Methode im Rahmen der bundesweiten Seminarreihe vor:

Dienstag, 7. November – Kamp-Lintfort (bei Duisburg, im Hause CEM)

Donnerstag, 09. November – Potsdam

Freitag, 10. November – Leipzig

Dienstag, 14. November – Singen (am Bodensee)

Mittwoch, 15. November – Waldbronn (bei Karlsruhe, im Hause Agilent)

Dienstag, 21. November – Hamburg

Mittwoch, 22. November – Braunschweig

Dienstag, 28. November – München

Donnerstag, 30. November – Frankfurt

http://www.cem.de/documents/seminare_kurse/tagessem_aufschluss.htm