Tag: Mikrowelle

HZG-Wissenschaftler entwickeln Verfahren zur Messung von Metall in Mikroplastik

Über die Anreicherung und den Transport persistenter organischer Schadstoffe durch Mikroplastik gibt es vergleichsweise viele Studien. Doch die Daten über die Anreicherung von für die Umwelt giftigen Metallen sind sehr rar und bisweilen wissenschaftlich unzuverlässig. Ein Team aus Wissenschaftlern des Helmholtz-Zentrums Geesthacht – Zentrum für Material- und Küstenforschung (HZG) hat jetzt gemeinsam mit Kollegen der Bundesanstalt für Gewässerkunde und der Christian-Albrechts-Universität zu Kiel (CAU) ein Verfahren entwickelt, mit dem entsprechende Metalle in Mikroplastik zuverlässig nachgewiesen werden können.

20200827140341_00001

Metalle aus der Plastikproduktion und der Umwelt nachweisbar

Probengefäß

In diesen Gefäßen werden die Proben aufbereitet und anschließend den Mikrowellen ausgesetzt. Danach werden die Materialien mit einem Massenspektrometer untersucht. Foto: HZG/Steffen Niemann

Mit dem neuen Verfahren können in den Mikroplastikpartikeln sowohl die Metalle nachgewiesen werden, die in der Plastikproduktion eingesetzt werden, als auch jene, die aus der Umwelt, beispielsweise aus Meerwasser, an die Partikel gebunden werden können. Zum Beispiel wird das Halbmetall Antimon oft als Katalysator für die Produktion von PET eingesetzt und ist dementsprechend im Plastik selbst zu finden. Schwermetalle wie Cadmium und Blei, die für viele Organismen giftig sind, können ebenfalls durch die Produktion enthalten sein, aber auch aus der Umwelt an die Oberfläche der Partikel gebunden werden.

Lesen Sie hier den detaillierten Artikel

https://www.hzg.de/public_relations_media/news/086784/index.php.de

The development of new—cheaper, more efficient, more sustainable, and more reliable—functional materials with useful properties calls for ever-improving, smart, and innovative synthesis strategies. A multitude of inorganic compounds are already used as energy materials, i.e., electrodes, catalysts, permanent magnets, and many more are considered highly promising for these and similar applications. Innovative synthesis techniques are developed, resulting in new compounds as well as known ones with unique structures and morphologies. Here, we will discuss the nonconventional solid-state methods, microwave heating and spark plasma sintering, highlighting their potential for the preparation of a plethora of inorganic compounds. Thermoelectric and magnetic materials are chosen as two examples of energy materials that are relevant for several different areas, such as waste heat recovery, energy generation, and refrigeration. The goal is to provide an overview of the inorganic compounds, ranging from intermetallics to chalcogenides and oxides, which have been prepared using these two nonconventional synthesis techniques. Furthermore, the reaction conditions as well as key properties regarding their thermoelectric and magnetic behavior are summarized.

DWuQtg-X0AAemy5

mehr Infos Link

Webinar zur Mikrowellenchemie

am Montag, 29. Juni 2020 um 17.00 Uhr

Microwave reactors have become the industry standard for medicinal chemistry, nanomaterials synthesis, and academic research and teaching labs. However, this synthetic platform is not always understood by chemists and often only used for routine transformations, a fraction of it’s capabilities. The exploration of synthetic chemical space is hampered by perceived limitations regarding the types of reactions or the compatibility of reagents used.

This webinar will provide a foundation for understanding microwave chemistry, and introduce new technologies to address the limitations of former techniques. In addition, these improvements will be applied to literature protocols to demonstrate their practical research value. These topics will be relevant to anyone engaged in synthetic chemistry from methodology development to applied synthesis.

Registrierung

 

Biochemie in der Mikrowelle – Einsatz der Mikrowelle zur Synthese und Analytik von Peptden und Proteinen, A. Rybka und U. Sengutta, GIT 9, 572-575 (2009)
Biochemie_GIT

 

Biochemie in der Mikrowelle. Synthestrategien von Peptoiden, S. Vollrath und S. Bräse, Labor & More, 2-6, September 2013
Braese

 

Analyse von Aminosäuren, Proteinen und Nitroderivaten in atmosphärischen Aerosolen und Straßenstaub“, Promotion Tobias Fehrenbach, TU München 2006
Proteinhydrolyse

In der organischen Synthese war der Einsatz von Mikrowellengeräten lange Zeit eine „exotische“ Anwendung – das Ölbad mit dem Rundkolben blieb Standardequipment. Der Grund hierfür war einfach: Anfängliche Synthese-Versuche in umfunktionierten Haushaltgeräten oder in modifizierten Aufschlussgeräten scheiterten an der zu geringen Energiedichte, an der gepulsten Mikrowelleneinstrahlung, an der ungleichmäßigen Energieverteilung („Mikrowellen-Chaos“) und an der unzureichenden Sensortechnik um reproduzierbare Versuchsabläufe zu beschreiben. Nun steht aber auch für den Bereich der Life Sciences, der kombinatorischen Chemie und der allgemeinen organischen chemischen Synthese mit dem Discover eine neue Geräteplattform von Mikrowellensystemen zur Verfügung, die speziell für die Anforderungen der chemischen Synthese entwickelt wurden.

Warum eigentlich Mikrowellen-Synthese?
Mikrowellenunterstützte Synthesen ermöglichen den Synthese-Chemikern ganz neue Wege zum gewünschten Produkt (Wirkstoff). Mit einem Höchstmaß an Flexibilität und bisher nicht vorhandenen Kontrollmöglichkeiten der Reaktionsparameter ermöglicht die Mikrowellen-Chemie ein direktes Einkoppeln der Energie in die gewünschten Reaktionen. In kürzester Zeit wird die notwendige Aktivierungsenergie der Reaktion zugeführt, was sich in der Beschleunigung gegenüber traditionellen Reaktionsbedingungen niederschlägt. So sind Zeitverkürzungen um den Faktor 100 bis 1000 keine Seltenheit. Die mikrowellenunterstützte Synthese ist zweifelsfrei der schnellste und der produktivste Weg zum gewünschten Wirkstoff. Über 10.000 Literaturstellen mit stark zunehmender Tendenz berichten von den Möglichkeiten dieser Technologie.

 

„Fokussierte Mikrowellen-Synthese“ Ulf Sengutta, Hans-Peter Meier, GIT Band 9, 1038 – 1043 (2002)

MW_Synthese

„Mikrowellen-Synthesen unter Normaldruck“, H. Ritter, Nachrichten aus Chemie, Mai 2005

Mikrowellensynthese unter Normaldruck Ritter

„Entdecke die Möglichkeiten. Organische Synthesen in der Mikrowelle“, J. Theis und H. Ritter, GIT 3/2011, 170 – 173

Entdecke die Möglichkeiten organische_synthesen

„Wasserstoff wechsel dich!“, J. Theis, H, Ritter, Labor and More 04/12

Ritter Theis Wasserstoff wechsel dich

„Leuchtende Nanopartikel aus der Mikrowelle“, A. Mudring, CHEMIEXTRA 6, 2012, 4 – 8

Mudring_Leuchtende_Nanopartikel

„Hydroxyethylierung mit Ethylencarbonat“, F. Szillat, N. Retzmann und H. Ritter, GIT 8, 584 – 585 (2012)

Hydroxyethylierung_Ethylencarbonat

„Gase aus der Mikrowelle“ N. Retzmann, F. Szillat, H. Ritter, Laborpraxis 3, 64 – 65 (2012)

Gase_aus_der_Mikrowelle_Synthese

„Synthesemethoden: Sanfte Festkörperchemie“ Groh, Heise, Kaiser und Ruck, Nachrichten aus der Chemie, 26 – 29, 1, 2013

Synthesemethoden_Sanfte_Festkoerperchemie

„CO2 aus der Mikrowelle – Cyclische Carbonate mittels Backpulver in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, Laborpraxis 3, 28 – 29 (2013)

CO2 aus der Mikrowelle

„Mikrowellentechnik im Labor – Destillation von Dicyclopentadien in der Mikrowelle“ N. Retzmann, F. Szillat und H. Ritter, GIT 3, 184 (2013)

Destillation in der MW

„Metalle aus der Mikrowelle. Eine leistungsstarke Methode“ M. Ruck und M. Heise, GIT 4, 246 – 247 (2013)

Metalle_Mikrowelle_GIT42013

„Getrennt und geschützt mit flüssigen Salzen“ Marquardt und Janiak, Nachrichten aus der Chemie, 754 – 757, 7, 2013

Getrennt_geschuetzt

„Materialsynthesen nahe Raumtemperatur – Mit Niedertemperatursynthesen zu Nanolegierungen und neuen Materialien“ M. F. Groh, M. Heise und M. Ruck, GIT 6, 48 – 50 (2014)

Materialsynthesen_Raumtemperatur

„SO2 aus der Mikrowelle – Synthesegase im labormaßstab selbst erzeugen“ U. Lampe, F. Szillat und H. Ritter, Laborpraxis 12, 36 – 37 (2014)

SO2 aus der Mikrowelle

„Acrylierte Phenole durch effiziente, lösemittelfreie Kondensation in der Mikrowelle“, Ulrich Lampe und Helmut Ritter, LaborPraxis 11, 36-38 2015

Acrylierte Phenole Mikrowelle

„Organische Synthesen in der Labormikrowelle – Von Duftestern und Aspirin“ Projektarbeit am Institut Dr. Flad, AutorInnen: Tobias Diener, Antonia Karina, Elena Lau und Selina Müller, CLB 9-10, 2015, 390-409

Organische_Synthesen_Labormikrowelle

mehr zur Mikrowellen-Synthese

 

Bessere Analyseergebnisse beginnen mit einer besseren Probenvorbereitung. Aufgrund der Komplexität der Cannabispflanze kann eine vollständige und zuverlässige Analyse schwierig sein. Der erste Schritt zu jeder Analyse besteht darin, einen vollständigen Aufschluss oder eine vollständige Extraktion in der Probenvorbereitung sicherzustellen. In diesem Webcast lernen Sie Techniken und Werkzeuge für eine schnelle, effiziente und reproduzierbare Probenvorbereitung für alle Ihre LC-MS-, GC-MS- und ICP-MS-Analysen von Cannabis- und Hanfproben kennen. Diskussionen über die Methoden und Techniken zur Extraktion von Pestiziden und THC aus Pflanzenmaterial und zum Mikrowellenaufschluss von gemischten Proben, einschließlich Blumen, Lebensmitteln, Lotionen, Extrakten und Ölen, werden angesprochen. Darüber hinaus werden wertvolle Probenhandhabungstechniken zur Erzielung einer konsistenteren und homogeneren Probenahme sowie Vergleiche zwischen klassischen und automatisierten Techniken sowie Optionen für niedrigen und hohen Durchsatz behandelt.   Wichtige Lernziele: Lernen Sie einfache und wiederholbare Probenvorbereitungstechniken für Cannabis und Hanfprodukte Verstehen Sie die Bedeutung temperaturkontrollierter Potenz- und Pestizidextraktionen durch Filtration und Kühlung Best Practices für die Mikrowellenverdauung in einer Charge aller Cannabis- und Hanfproben, einschließlich Blumen, Lebensmittel, Lotionen, Öle und Extrakte.

www.loesemittel-extraktion.de

 

Mikrowellentechnik beschleunigt die Protein Hydrolyse

Die Protein Hydrolyse ist eine altbewährte Aufschlussprozedur aus den Fünfziger Jahren (Stein und Moore) von Proteinen und Peptiden zur Analyse der Aminosäuren. Mit der Aminosäure Analyse (AAA) erfolgt die Quantifizierung der einzelnen Aminosäuren der jeweiligen Probe und stellt eine Voraussetzung zur Identifikation der Aminosäuresequenz des Proteins/Peptids dar.

Lesen in dem Artikel „Operation of the CEM Discover SP Microwave Reaction System for Amino Acid Hydrolysis“ über den vorteilhaften Einsatz der Discover Mikrowelle zur Proteinhydrolyse

715006455_Figure_08

Lesen Sie hier die Details…

 

The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.

Lesen Sie den gesamten Artikel

MARS6_Photos_Lab_47