Tag: Liberty Blue

Anwenderkurse zur Peptid-Synthese im Februar 2024

 

Die CEM GmbH bietet 2024 Ausbildungs- und Anwenderkurse zur Peptid-Synthese in den eigenen Firmenräumen in Kamp-Lintfort am Niederrhein an.
Im Rahmen dieser Kurse werden die Teilnehmer/innen in den theoretischen Grundlagen und insbesondere in der Methodenentwicklung für die Peptid-Synthese geschult. Bei den praktischen Übungen in kleinen Gruppen können die Teilnehmer/innen anhand der individuellen Problemstellungen Methoden programmieren. Das Ziel dieses Anwenderkurses ist das eigenständige Entwickeln von Synthese-Protokollen bzw. Synthese-Methoden.

Der Teilnehmerkreis richtet sich an Laboranten/innen, Ingenieure/innen, Chemiker/innen, etc. Der erste Seminartag beginnt um 13.30 Uhr, es kann also vorher die Anreise erfolgen. Am 2. Seminartag endet die Veranstaltung um 14.00 Uhr, so dass anschließend die Heimfahrt angetreten werden kann.

In Abhängig der Zusammensetzung der Teilnehmer*innen findet der Kurs in deutscher oder englischer Sprache statt.

Der Kostenbeitrag für dieses 2tägige Seminar beträgt 1.500 EUR zzgl. MWSt. und beinhaltet:

  • umfangreiche Seminarunterlagen
  • zwei Mittagessen
  • ein gemeinsames Abendessen
  • eine Hotelübernachtung
  • den Transfer zwischen dem Hotel und den Schulungsräumen
  • und den Transfer am Seminarende zum ICE-Bahnhof Duisburg oder zum Flughafen Düsseldorf.

 

Folgende Seminarinhalte werden behandelt:

Übersicht und Grundlagen der Peptid-Synthese-Methodik

  • Sicherheitsaspekte
  • Applikationsbeispiele
  • Maintenance & Troubleshooting, selbst Hand anlegen
  • Praktikumsstart, Einweisung an den Geräten, Tipps

Grundlagen zur Methodenentwicklung

  • Grundlagen der Reaktionsbedingungen für die optimale Synthese
  • Grundlagen der Mikrowellen-Peptid-Synthese (Kurs 1)
  • Grundlagen zu den Modulen Platten, Säulen, SPOT (Kurs 2)
  • Alternative Lösemittel
  • Harze, Eigenschaften und optimaler Einsatz

Praktische Arbeit
Praktische Tipps zur erfolgreichen Synthesestrategie

 

Termine:

Kurs 1: Anwenderkurs für die mikrowellenaktivierte Peptid-Synthese (Discover SPS, Liberty, Liberty Blue, Liberty Prime) am 21. & 22. Februar 2024

Kurs 2: Anwenderkurs für die parallele Peptid-Synthese (MultiPep) am 28. & 29. Februar 2024

 

Anmeldung:

Anmeldung Anwenderkurs Peptidsynthese

 

Hinweis
Auf Wunsch bieten wir nach individueller Absprache auch Anwenderkurse vor Ort beim Kunden an. Zur Terminabsprache und für Detailinfos kontaktieren Sie bitte den Kursleiter Herrn Sengutta unter ulf.sengutta(at)cem.com

LABO PRODUKT DES JAHRES 2022

Die Laborbranche steckt voller Innovationen, es wird Zeit, diese zu zeigen: Die Leser von LABO wählten im Herbst 2022 die LABO Produkte des Jahres.

In der Kategorie „Life Sciences“ gewann das innovative mikrowellenbeschleunigte Liberty Prime 2.0 Peptidsynthese-System den 1. Platz!

Das Liberty Prime 2.0 ermöglicht die schnelle Synthese von reinen Peptiden und schwierigen Sequenzen in wenigen Minuten satt in vielen Tagen wie bei klassischen Synthesizern. Die neue Liberty Prime Technologie ermöglicht einen 2 min. Kupplungszyklus und extrem schnelle Reagenzienzuführung. Zudem werden bis zu 95 % Lösemittel gegenüber klassischen Peptid-Synthesizern und Mikrowellen-Synthesizern der 1. Generation eingespart.

20230316090952_00001

#GreenChemistry #lifescience #Peptidsynthese #Labo

 

Wählen Sie jetzt das PRODUKT DES JAHRES 2023!

Die Laborbranche steckt voller Innovationen, es wird Zeit, diese zu zeigen: Die Leser von LABO können ab sofort die LABO Produkte des Jahres wählen.

https://www.labo.de/leserpreis-2023.htm

Unser Peptidsynthesizer Liberty Blue 2.0 und der schnellste Muffelofen der Welt Phönix Black warten auf Ihre Stimme.

 

20221209125913_00001

20221209125935_00001

#LibertyBlue #PhönixBlack

#Peptidsynthese #Muffelofen #SchnellerMuffelofen

 

Neues Jahr – Neuer Podcast!
Begleiten Sie Dr. Wendy Hartsock und andere Wissenschaftler in einer neuen Podcast-Serie über Peptide und Proteine. Die Gäste berichten von ihrer Forschung und Sie können von überall (sogar im Labor!) teilnehmen.

Melden Sie sich hier an

1641319210458

 

10. März 2021, ab 10.15 Uhr

Erleben Sie einen ganzen Tag interessante Vorträge zu den Neuigkeiten der Peptid-Synthese. Aufgrund der Corona-Situation können Präsenzvorträge derzeit nicht stattfinden. Deshalb veranstaltet CEM zusammen mit bekannten Forschern/innen dieses kostenfreie Online Seminar.

Academic Guest Speakers:


Professor Anna Maria Papini

University of Florence,

CY Cergy Paris Université

The challenge to design fully automated solid-phase MW-assisted cGMP ready processes of peptide production as active pharmaceutical ingredients 

Interdepartmental Research Unit of Peptide & Protein Chemistry and Biology, Departments  of Chemistry and NeuroFarBa, University of Florence (Italy)

With the increase of approved peptide-based drugs and patents expiring, the manufacturers’ need in production of peptides is dramatically rising. Companies involved in peptide-based drugs that have to be compliant with good manufacturing practices (GMP), face several challenges, such as high production costs on downstream processes (due to the use of high raw material amounts) and bad scalability. Therefore, the main challenge of production of active peptides as pharmaceutical ingredients is to find solutions to specific problems encountered during scale-up. 

As a proof-of concept we will report the strategies we investigated for the preparation of Eptifibatide, scalable to kilogram-scale, having in common the use of the microwave-assisted solid-phase peptide synthesis (MW-SPPS) procedure, which is now available not only at R&D level but also for the large-scale manufacturing of peptides. Following the very fast microwave-assisted Fmoc/tBu synthesis of the Eptifibatide linear precursor by a DIC/Oxyma Pure coupling protocol at 90 °C, we explored both the solution (off-resin) and the solid-phase (on-resin) disulfide bond formation.

The relevance of the strategy we optimized is essentially based on the selection of the StBu orthogonal protection on cysteine that is easily removed by MPA acting as a novel reducing agent for Cys(StBu) deprotection. Moreover, we demonstrated that all operations can be performed by fully automated process in the instrumentation.

To the best of our knowledge, this is a unique strategy performing all the processes including disulfide bond formation in a single reactor and represents an optimized scalable fully automated solid-phase microwave-assisted cGMP-ready process to prepare Eptifibatide.


Designing Synthetic Peptides to Explore the Dark Matter of Protein Space

Dek Woolfson

Schools of Chemistry and Biochemistry, & Bristol BioDesign Institute

University of Bristol, UK

Protein design—i.e., the construction of entirely new protein sequences that fold into prescribed structures—has come of age: it is now possible to generate a wide variety stable protein folds from scratch using rational and/or computational approaches.  A new challenge for the field is to move past protein structures offered up by nature and to target the so-called ‘dark matter of protein space’; that is, protein structures that should be possible in terms of chemistry and physics, but which biology seems to have overlook or not used prolifically.  This talk will illustrate what is currently possible in this nascent field using de novo a-helical coiled-coil peptides as building blocks for assembling larger, more-complex and functional protein-like structures.1

Coiled coils are bundles of 2 or more a helices that wrap around each other to form rope-like structures.  They are one of the dominant structures that direct natural protein-protein interactions. Our understanding of coiled coils provides a strong basis for building new proteins from first principles.  The first part of my talk will survey this understanding,1 our design methods,2,3 and our current “toolkit” of de novo coiled coils.4-5

Next, I will describe how the toolkit can be expanded used to generate some dark-matter protein structures.  I’ll focus on the rational and computational design of a-helical barrel proteins, which have 5 or more helices surrounding accessible central channels.6  Finally, I’ll discuss how these synthetic barrel proteins can be put to use to make new nanotube materials,7 rudimentary catalysts,8 membrane-spanning pores,9 and the components of a new types of sensing devices.10

Professor Dek Woolfson

University of Bristol


Professor Fernando Albericio

University of Barcelona,

University of Kwazulu-Natal

Microwave-Assisted Solid-Phase Peptide Synthesis, A Unique Tool for Peptide Research

Fernando Albericio,1,2 Beatriz G. de la Torre1

1University of KwaZulu-Natal, Durban 4001, South Africa; 2University of Barcelona, 08028-Barcelona, Spain

During the last five years (2016-2020), 18 drugs containing peptides have been approved by the US FDA.  In addition, several hundred are in clinical phases or advanced preclinical studies.   The development of new synthetic strategies has facilitated this explosion in the world of peptides. In this regard, the development of new resins, coupling reagents, protecting groups, and, more importantly, reliable and robust peptide synthesizers have been vital for the consolidation of the peptide drug market. 

In the field of automatic synthesizers, the last breakthrough occurred when at the beginning of this century, CEM launched the new concept of Microwave-Assisted SPPS. Our group and others have demonstrated that both couplings and Fmoc-removal are better performed in the microwave mode compared with classical synthesis or even with conventional heating. More important, this better performance in the two key reactions is not accompanied by any significant side-reaction. 

This presentation will discuss our last results on the use of Microwave synthesis for the preparation of intriguing peptides and/or for developing new synthetic strategies: (i) the preparation of staple peptides via late-stage C(sp2)-H Pd activation using the microwave; (ii) synthesis of N-alkyl amino acid containing peptides; (iii) development of new and more efficient coupling reagents; and (iv) microwave-based Green Solid-Phase Peptide Synthesis (GSPPS). 

 

In the GSPPS, the CEM Liberty Blue Microwave technology by itself could be considered green in terms of solvent consumption and time-saving and due to the excellent quality of the crude peptides, which enormously facilitates the purification with the consequent increase of yield and reduction of chromatography solvents.


Short antimicrobial peptides – discovery and optimization 

Kai Hilpert, St George’s University

The global health threat surrounding bacterial resistance has resulted in antibiotic researchers shifting their focus away from ‘traditional’ antibiotics and concentrating on other antimicrobial agents, including antimicrobial peptides.

These peptides exhibit broad-spectrum activity against bacteria, including multi-drug resistant strains, viruses, fungi, and protozoa, and constitute a major element of the innate immune system of many multicellular organisms.

We use the Spot-synthesis technique to study and optimize naturally occurring as well as artificial antimicrobial peptides. Understanding the features that make them antibacterial and hemolytic allows for targeted drug development. 

Associate Professor Kai Hilpert

St George’s University

 

Der Zeitliche Ablauf

 

Registrieren Sie sich hier kostenfrei

Peptid-Synthese im Liberty Blue

The insulin-like peptide human relaxin-2 was identified as a hormone that, among other biological functions, mediates the hemodynamic changes occurring during pregnancy. Recombinant relaxin-2 (serelaxin) has shown beneficial effects in acute heart failure, but its full therapeutic potential has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. In this study, we report the development of long-acting potent single-chain relaxin peptide mimetics. Modifications in the B-chain of relaxin, such as the introduction of specific mutations and the trimming of the sequence to an optimal size, resulted in potent, structurally simplified peptide agonists of the relaxin receptor Relaxin Family Peptide Receptor 1 (RXFP1) (e.g., 54). Introduction of suitable spacers and fatty acids led to the identification of single-chain lipidated peptide agonists of RXFP1, with sub-nanomolar activity, high subcutaneous bioavailability, extended half-lives, and in vivo efficacy (e.g., 64).

Sehen Sie hier den Film

 

Im kostenfreien Web-Seminar erläutern die Referenten Frau Dr. Monika Swiontek und Herr Dr. Christian Behn die unterschiedlichen Techniken zur schnellen und flexiblen Peptid-Synthese.

Die Synthese unter Mikrowellenaktivierung ermöglicht in wenigen Stunden die Darstellung reiner Peptide statt wie üblich in vielen Tagen. Synthesemaßstäbe von Milligramm Mengen bis zur Produktion im kg-Bereich werden vorgestellt. Während einer live Vorführung im Labor erleben Sie einen Kopplungszyklus und lernen dabei die einfache intuitive Software kennen. In Ergänzung dazu werden flexible Formate der multiplen parallelen Synthese vorgestellt, wie z. B. SPOT-Synthese, Festphasensynthese in 96er Filterplatten- und Filtersäulen zur Synthese von Peptid- und PNA-Bibliotheken. Zusätzlich wird ein Aspekt der beiden Referenten auf die Abspaltung der fertig synthetisierten Peptide gelegt und es werden zwei moderne Cleavage-Systeme vorgestellt.

Mittwoch, den 9. Dezember 2020, 10.00 – 11.30 Uhr und 14.00 – 15.30 Uhr

Hier kostenfrei anmelden

In den letzten Jahren hat sich der Einsatz der Mikrowelle bei der Synthese von Peptiden mehr und mehr durchsetzen können. Zahlreiche Publikationen belegen, dass unter Mikrowelleneinwirkung gerade sehr schwierige Sequenzen gut synthetisierbar werden, was vor allem auf die Eliminierung der Aggregationsproblematik hydrophober Peptidketten zurückzuführen ist. Hervorzuheben ist, dass es im Mikrowellenfeld trotz thermischer Effekte zu einer Unterdrückung der Racemisierung kommt. In Verbindung mit einer geeigneten Capping / Tagging-Strategie lassen sich heutzutage auch Peptide mit mehr als 100 Aminosäuren an einem Stück synthetisieren.


Apparativ stehen dem Anwender dabei mittlerweile sowohl manuelle als auch vollautomatisierte Systeme zur Verfügung. Mit steigender Peptidlänge macht die Anwendung eines automatisierten Systems Sinn – nicht zuletzt aufgrund der höheren Zuverlässigkeit. Hierfür stehen mit der Liberty-Familie verschiedene vollautomatisierte Systeme zur Verfügung, die in den letzten Jahren software- und hardwaretechnisch soweit optimiert wurde, dass mittlerweile praktisch jede Art von Chemie auf einfache Art und Weise implementiert werden kann.

Monika Szefczyk

Dr. Monika Szefczyk, ist Forscherin im Labor von Prof. Dr. Lukasz Berlicki am Institut für Bioorganische Chemie der Wrocław University of Science and Technology. Sie traf sich mit CEM, um ihre Forschung zu Peptidfoldameren vorzustellen, die in der SARS-Cov-2-Hemmung angewendet werden. Prof. Dr. Berlickis Labor besitzt einen CEM Liberty Blue Mikrowellen-Peptidsynthesizer.

Lukasz Berlicki

Frage: Können Sie Hintergrundinformationen zur Berlicki-Forschungsgruppe liefern?

Dr. Szefczyk: Das Berlicki Lab ist eine der fünf Forschungsgruppen des Instituts für Bioorganische Chemie der Wrocław University of Science and Technology. Es wird von Professor Łukasz Berlicki geleitet und besteht aus sieben Forschern/innen und drei Doktoranden/innen. Unsere Forschung konzentriert sich auf drei Hauptthemen:

1) Struktur, biologische und katalytische Aktivität von Peptidfoldameren,

2) Synthese und Aktivität von Inhibitoren ausgewählter Enzyme und

3) Peptid-basierte Nanostrukturen.

Wir leiten 5 laufende Forschungsprojekte, die vom Nationalen Wissenschaftszentrum und der Polnischen Nationalen Agentur für akademischen Austausch mit einem Gesamtbetrag von mehr als 5 Mio. EURO finanziert werden.

Berlicki Lab

Frage: Was sind Ihre wichtigsten Forschungsziele?

Dr. Szefczyk: Wir arbeiten hauptsächlich an Peptidfoldameren – Oligomeren, die eine hohe Tendenz zur Faltung in stabile dreidimensionale Strukturen in Lösung aufweisen. Die Möglichkeit der rationalen Konstruktion strukturell ausgedehnter Moleküle bietet die Möglichkeit, Materialien mit zahlreichen Funktionalitäten herzustellen. Die Entwicklung einer rationalen Strategie zur Erzielung erweiterter proteinartiger foldamerer Strukturen (sogenannte foldamerische Miniproteine) ist eines unserer Hauptziele. Anschließend wenden wir die erhaltenen Strukturen zum Aufbau von Molekülen an, die katalytische oder biologische Aktivitäten aufweisen. Der Aufbau von Enzymmimetika liefert Katalysatoren für verschiedene Reaktionen und ermöglicht ein besseres Verständnis der Wirkung nativer Enzyme. Darüber hinaus synthetisieren wir Protein-Protein-Interaktionsinhibitoren, die möglicherweise in der Krebsimmuntherapie nützlich sind. Kürzlich haben wir uns auf die Gruppe der Peptidfoldamere konzentriert, die die Interaktion von menschlichem ACE2- und SARS-Cov-2-Virus-S-Protein hemmen können. Solche Verbindungen könnten den Viruseintritt in menschliche Zellen stoppen und Kandidaten für Arzneimittel gegen Covid-19 sein. Wir konzentrieren uns auch auf einen weiteren interessanten Aspekt von Peptidfoldameren, nämlich ihre Fähigkeit, durch kontrollierte Selbstaggregation Nanostrukturen zu bilden. Wir haben verschiedene Peptide mit Beta-Aminosäuren entworfen, synthetisiert, charakterisiert und daraus Nanofibrillen im Prozess der Selbstassoziation erhalten. Jetzt bemühen wir uns, verschiedene mikroskopische Techniken zu entwickeln, die der Charakterisierung erhaltener Nanostrukturen und Bionanomaterialien im Allgemeinen gewidmet sind.

 

Frage: Wie hat die Peptidsynthese im Liberty Blue Ihre Forschung verbessert?

Dr. Szefczyk: Am wichtigsten ist es, dass wir mit dem Liberty Blue die Synthesezeit erheblich verkürzen und die Kosten für Lösungsmittel und Abfall im Vergleich zu anderen automatisierten Synthesizern senken konnten. In unserem Fall ist der Unterschied signifikant, wenn man eine große Anzahl von Peptiden mit langen Sequenzen berücksichtigt, die wir in unserem Labor synthetisieren. Darüber hinaus konnten wir die Synthese von Peptiden mit sogenannten „schwierigen Sequenzen“ leicht optimieren.

Frage: Glauben Sie, dass das Liberty Blue für andere Wissenschaftler nützlich sein könnte?

Dr. Szefczyk: Wir würden den Liberty Blue als einfach zu verwendenden, zeit- und kostensparenden Synthesizer empfehlen, der es uns ermöglicht, Peptide mit guter Ausbeute und Reinheit zu erhalten. Erwähnenswert ist auch die Verfügbarkeit professioneller Unterstützung durch die technischen Spezialisten von CEM.

Frage: Wo sollten Chemiker nach weiteren Informationen zu Ihrer Forschung suchen?

Dr. Szefczyk: Wir sind auf Facebook und Twitter @berlickilab. Weitere Informationen finden Sie auch auf der Webseite unserer Abteilung: http://bioorganic.ch.pwr.wroc.pl/ oder in den ausgewählten Veröffentlichungen unten.

  1. Fortuna, P.; Linhares, B. M.; Purohit, T.; Pollock, J.; Cierpicki, T.; Grembecka, J.; Berlicki, Ł., Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction J. Med. Chem. 2020, 207, 112748.
  2. Drewniak, M.*; Węglarz-Tomczak, E*; Ożga, K.; Rudzińska-Szostak, E.; Macegoniuk, K.; Tomczak, J. M.; Bejger, M.; Rypniewski, W.; Berlicki, Ł. *contributed equally., Helix-loop-helix peptide foldamers and their use in the construction of hydrolase mimetics. Chem. 2018, 81, 356.
  3. Szefczyk, M.; Węglarz-Tomczak, E.; Fortuna, P.; Krzysztoń, A.; Rudzińska-Szostak, E.; Berlicki, Ł., Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting Angew. Int. Ed. 2017, 56, 2087.
  4. Rudzińska-Szostak, E.; Berlicki, Ł., Sequence engineering to control the helix handedness of peptide foldamers Eur. J. 2017, 23, 14980.
  5. Magiera-Mularz, K.; Skalniak, L.; Zak, K. M.; Musielak, B.; Rudzinska-Szostak, E.; Berlicki, Ł.; Kocik, J.; Grudnik, P.; Sala, D. Zarganes-Tzitzikas, T.; Shaabani, S.; Dömling, A.; Dubin, G.; Holak, T. A., Bioactive Macrocyclic Inhibitors of the PD-1/PD-L1 Immune Checkpoint Chem. Int. Ed. 2017, 56, 13732.