Tag: Mikrowelle Chemie

Schnelle und einfache MOSH/MOAH Analytik in der Mars 6 Mikrowelle

Mineralöle kommen in unserer Umwelt nahezu überall vor. Ihre Bestandteile können auf ganz unterschiedlichen Wegen sowohl in pflanzliche als auch in tierische Lebensmittel gelangen. Betrachtet man ihre chemische Struktur, so handelt es sich dabei im Wesentlichen um gesättigte Mineralölkohlenwasserstoffe (MOSH) und zu einem geringeren Anteil um aromatische Mineralölkohlenwasserstoffe (MOAH).

Mit den Abkürzungen MOSH und MOAH werden zwei unterschiedliche Gruppen chemischer Verbindungen bezeichnet, die im Mineralöl vorkommen. MOSH steht dabei für englisch Mineral Oil Saturated Hydrocarbons (Gesättigte Mineralölkohlenwasserstoffe), MOAH für englisch Mineral Oil Aromatic Hydrocarbons (Aromatische Mineralölkohlenwasserstoffe).

Beide werden leicht aus Lebensmitteln in den Körper aufgenommen und können sich im Kör­perfett sowie in einigen Organen anreichern. Ab­leitungen zur toxikologischen Bewertung werden aus Tierversuchen getroffen, weil derzeit keine Studien über die Effekte auf den Menschen vor­liegen. Die Aufnahme von MOAH sollte nach Ansicht des Bundesinstituts für Risikobewer­tung (BfR) gänzlich vermieden werden, da nicht auszuschließen ist, dass in dieser Fraktion auch krebserregende Verbindungen vorkommen.

Mineralöle setzen sich im Wesentlichen aus zwei chemisch und strukturell unterschiedlichen Frak­tionen zusammen. Die Hauptfraktion besteht zu einem Anteil von 75 bis 85 % aus so genannten MOSH (Mineral Oil Saturated Hydrocarbons), bei der kleineren Fraktion mit einem relativen Anteil von 15 bis 25 % handelt es sich um so genannte MOAH (Mineral Oil Aromatic Hydrocarbons). Beide Fraktionen bestehen aus Kohlen-stoffketten mit meist weniger als 25 Kohlenstoff-atomen (<C25). MOSH sind gesättigte paraffinartige, d. h. offenkettige, meist verzweigte und naphtenartige (zyklische) Kohlenwasserstoffe mit niedriger bis mittlerer Viskosität. Bei MOAH handelt es sich um eine große Zahl verschiedener aromatischer Kohlenwasserstoffe, die überwiegend aus einem bis vier Ringsystemen bestehen und bis zu 97 % alkyliert sind

Beide Stoffgruppen werden in Lebensmitteln und Kosmetika untersucht.

Der analytische Nachweis und die quantitative Bestimmung der MOSH- und MOAH-Fraktion erfolgt als Summenparameter. Hierfür werden die Proben mit n-Hexan extrahiert und der Extrakt mit gekoppelter HPLC-GC mit Flammenionisationsdetektor oder massenspektrometrischem Detektor analysiert. Vorher wird noch ein Verseifungsschritt mit KOH vorgeschaltet. Die herkömmliche nasschemische Probenvorbereitung der Verseifung und Lösemittelextraktion ist arbeitsaufwändig und zeitintensiv. Als schnelle und einfache Alternative mit hohem Probendurchsatz in kurzer Zeit wurde ein Verfahren in der Mars 6 Mikrowelle mit speziell entwickelten Reaktionsbehältern entwickelt.

GreenChem Behälter im Mars

In nur 20 min. erfolgen nun mit Hilfe einer speziellen Rührtechnik die Verseifung und die Lösemittel-Extraktion.

Rührung

Dabei ist die Temperaturmessung ein entscheidender Parameter für die Richtigkeit und Reproduzierbarkeit. Die im Mars 6 eingebaute iWave Temperatursensorik misst berührungslos durch verschiedene Materialien wie z. B. Hostaflon TFM und Glas die Probentemperatur der Proben.

2F395158

 

Die ausführlichen Daten wurden von Moret et al. veröffentlicht: „Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)–gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs”

Sehen Sie selbst die MOSH/MOAH Probenvorbereitung in diesem Film

 

Möchten Sie die MOSH/MOAH Probenvorbereitung mit Ihrer Chromatographie koppeln? Ein vollautomatischer Autosampler bedient die Mikrowelle sowie die GC.

FAMEs-solution_highresolution

GERSTEL_FAMEs_detail

 

 

 

Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose

Schnelle und effiziente chemische Synthese in der Mikrowelle

ja-2013-056273_0008

A systematic investigation of the interaction of microwave irradiation with microcrystalline cellulose has been carried out, covering a broad temperature range (150 → 270 °C). A variety of analytical techniques (e.g., HPLC, 13C NMR, FTIR, CHN analysis, hydrogen–deuterium exchange) allowed for the analysis of the obtained liquid and solid products. Based on these results a mechanism of cellulose interaction with microwaves is proposed. Thereby the degree of freedom of the cellulose enclosed CH2OH groups was found to be crucial. This mechanism allows for the explanation of the different experimental observations such as high efficiency of microwave treatment; the dependence of the selectivity/yield of glucose on the applied microwave density; the observed high glucose to HMF ratio; and the influence of the degree of cellulose crystallinity on the results of the hydrolysis process. The highest selectivity toward glucose was found to be ∼75% while the highest glucose yield obtained was 21%.

Lesen Sie den kompletten Artikel

J. Am. Chem. Soc.20131353211728-11731
Publication Date:July 29, 2013
https://doi.org/10.1021/ja4056273
Copyright © 2013 American Chemical Society

Unbenannt

 

Das Projekt mobiLLab

Wir alle schöpfen die scheinbar unbegrenzten Möglichkeiten und Annehmlichkeiten moderner Technik voll aus. Aber paradoxerweise hat die Vermittlung von naturwissenschaftlichem Basiswissen, das sowohl zu deren Weiterentwicklung wie auch einer sinnvollen Nutzung zugrunde liegt, zunehmend an Bedeutung verloren.

Der naturwissenschaftliche Unterricht der letzten beiden Dekaden an der Oberstufe wie auch an Mittelschulen der Schweiz verlor infolge einer zu geringen Stundendotation durch die Integration der 3 naturwissenschaftlichen Fächer Biologie, Chemie und Physik zu „Natur und Technik oder „Mensch und Umwelt deutlich an Attraktivität und Qualität. Dies äusserte sich sowohl am geringen Interesse der Jugendlichen an naturwissenschaftlich-technischen und umweltbezogenen Fragen (PISA-Studie 2006) als auch im mangelnden Nachwuchs von begabten Jugendlichen und Studierenden in naturwissenschaflich-technischen Berufen und Studienrichtungen. Die Auswirkungen auf die Versorgung mit Nachwuchskräften der Natur- und Ingenieurwissenschaften in Forschung, Industrie und Wirtschaft, kurz unsere naturwissenschaftlich-technische Kompetenz, unabdingbar für unsere rohstoffarme Ökonomie werden bereits schmerzlich sichtbar.

Hier setzt nun das Projekt mobiLLab an, das aus einer Zusammenarbeit der Metrohm Stiftung und der Pädagogischen Hochschule des Kantons St.Gallen (PHSG) entstanden ist. Das Kernanliegen der Metrohm Stiftung ist die Förderung von Interesse, Verständnis und einer positiven Motivation der Jugendlichen gegenüber Naturwissenschaft und Technik. Dazu unterstützt sie seit Jahren attraktive und schulergänzende Angebote.

IMG_0571

 

Das mobiLLab ist ein mobiles Hightech-Labor mit zwölf Arbeitsplätzen, welches für einen Tag an ein Oberstufenzentrum kommt. Es möchte bei den Jugendlichen das Interesse an Naturwissenschaften und Technik fördern. Mit Hilfe modernster Instrumente und Methoden sollen sie alltagsnahe Fragestellungen untersuchen. Der Umgang mit den modernen Geräten soll sie motivieren und zu einer vertieften Auseinandersetzung mit verschiedenen Themen anregen.

Quelle: www.mobillab.ch

In dieser Methodensammlung finden Sie 308 Aufschluss Methoden aus den Bereichen

Landwirtschaft,

Lebensmittel,

Öle,

Kunststoffe,

Abfall,

Abwasser,

Umwelt,

Geologie und Mineralogie,

Gebrauchsgegenstände,

klinische und biologische Proben,

Materialwissenschaften,

Metallurgie und Legierungen,

Farben und Beschichtungen,

Kosmetik,

Pharma und Biotech,

Filter und Emissionsschutz

zum Mikrowellen-Aufschluss im Mars 6

Aufschlussmethoden Mikrowellenaufschluss Mars 6

Methodensammlung (pdf): MetNote_MARS6_Compendium

Neuartige iPrep Behälter für Hochtemperatur-Aufschlüsse von organischen und anorganische Proben

Aufschlüsse im Druckbehälter bei ca. 300 °C für komplexe organische Proben, die aufgrund des Kohlenstoffgehaltes bis zu 100 bar Druck entwickeln können, erfordern besondere Anforderungen an die Behältertechnologie. Mit den iPrep Behältern ist es nunmehr möglich, Pharmawirkstoffe, Farbstoffe, Lebensmittel, Bitumen, Klebstoffe, Kunststoff, Öl,… etc. sicher und zuverlässig aufzuschließen.

Hohe Aufschlusstemperaturen benötigen auch refraktäre anorganische Materialien wie Dental-Legierungen, Carbide, Nitride, Aluminiumoxid, Keramiken, mineralogische Proben, Stähle, Katalysatoren, Oxide, Spinelle, etc. Dazu wurde im iPrep System ein besonderer Behälteraufbau mit neuartigen Werkstoffen im Zusammenspiel mit der Hochleistungskühlung und exakter Temperaturmessung im Mars 6 Mikrowellengerät realisiert. Der besondere Clou: Keine Berstscheiben, keine Federelemente, nur 2 Bauteile, also einfachste Bedienung! Kein anderes auf dem Markt befindliche Gerät benötigt so wenig Platz im Labor für Hochtemperaturaufschlüsse wie das Mars 6 mit den iPrep Behältern.

Mars 6

 

Die iPrep Gefäße sind hervorragend geeignet, um selbst hartnäckigste Proben wie z. B. diverse Chromoxide (siehe Bild) in einer Stunde schnell und komfortabel aufzuschließen.

 

Unter der Probenvorbereitung versteht man die Aufarbeitung der zu analysierenden Probe in eine für die Bestimmung der relevanten Substanz geeigneten Form. In der Analytik kommt den atomspektroskopischen Bestimmungsmethoden (AAS, ICP-OES, ICP-MS) eine große Be­deutung zu. Es ist jedoch erforderlich, daß die Probensubstanz in Lösung vorliegt. Aus diesem Grund folgt dem Homogenisieren und Trocknen fester Proben ein Aufschlussprozess. Das Ergebnis sollte eine vollständige Matrixzersetzung sein, bei dem Verluste des Analyten verhindert werden und dieser nachher unter Umständen nach Entfernung der Matrixelemente störungsfrei bestimmt werden kann. Bei den Aufschlußmethoden kann zwischen naßchemische Aufschlüssen, Schmelzaufschlüssen und Aufschlüssen durch Gasreaktion unterschieden werden. Die zu verwendende Aufschlußmethode wird je nach Erfordernis der Bestimmungsmethode ausgewählt.

Bei einem naßchemischen Aufschluß wird die feste Probensubstanz in Wasser, Säuren oder Säuregemischen gelöst. Dies kann sowohl in offenen als auch in geschlosse­nen Behältnissen durchgeführt werden.

Oftmals ist ein rückstandsfreies Lösen komplexer Matrizes jedoch nicht erreichbar, da die Aufschlusstemperatur unter Atmosphärendruck durch die Siedetemperatur des verwende­ten Lösungsmittels begrenzt ist. Als Alternative bieten sich sogenannte Druckaufschlüsse in statisch geschlossenen Systemen an, mit denen Aufschlüsse meistens mit Säuren unter drastischen Bedingungen durchgeführt werden können. Bedingt durch den höheren Druck stellt sich eine höhere Siedetemperatur ein, welches mit einer stärkeren Oxidationskraft der Aufschlusssäure einhergeht. Zudem werden Spurenverluste und Kontaminationen von außen vermieden. Druckaufschlüsse können nach der Art der Wärmeübertragung an die Aufschlußlösung un­terschieden werden. Man unterscheidet die konvektive Wärmeübertragung und die Einwir­kung von Mikrowellen, welche völlig unterschiedlichen Prinzipien unterliegen. Bei der konventionellen Aufheizung mit Heizplatten, Öfen oder metallischen Heizblocks, wird die Wärmeenergie von der geheizten Gefäßwand an die Lösung abgegeben, wo der Wär­meaustausch über Konvektion stattfand. Diese Übertragung ist nicht sonderlich effektiv, da die Energie nur über die im Verhältnis zur Masse kleinen Oberfläche abgegeben wird. Dies führt zu den langen Aufheizphasen bei der konventionellen Druckaufschlusstechnik.

 

Die Wärmeübertragung basiert auf der Wechselwirkung der elektromagnetischen Strah­lung mit heteropolaren Molekülen und ist umso stärker je größer das Dipolmoment bzw. das Dielektrikum der Stoffe ist. Es könnte so verstanden werden, daß die Mikrowellenenergie zum einen eine Rotations- und Schwingungsbewegung der Dipole und zum anderen eine be­schleunigte Bewegung von Ionen mit einer Zunahme der Stoßzahlen in der Aufschlußlö­sung fördert.

Dipolrotation

Bild1

 

Ionenleitung

Bild2

Es können jedoch nur ioni­sche oder polare Substanzen mit Hilfe der Mikrowellentechnik aufgeheizt werden. Mikro­wellentransparente Stoffe können, soweit sie chemisch resistent sind als Gefäßmaterialien verwandt werden. Ein Maß für die Ab­sorption von Mikrowellenenergie ist der sogenannte Dissipationsfaktor tan d, welcher den Vergleich von dialektischen Verlust  zur Dielektrizitätskonstante  darstellt. In der folgenden Tabelle ist ein Vergleich der Dissipationsfaktoren für verschiedene Aufschlußsäuren und Ge­fäßmaterialien wiedergegeben.

 

Aufschlusssäuren und Gefäßmaterialien

 

Material/ Substanz Siedetemperatur [°C] Dissipations-faktor [tan d]
Wasser 100 157000
HCl (36%) 109,5 8600
HF (48%) 108 11000
HNO3 120 11000
H2SO4 (96%) 338 13500
PTFE 0,017
PFA 0,017
Quarz 0,005

 

Die geringen Mikrowellenabsorptionsraten machen PTFE-Derivate, PFA und Quarz zu bevorzugten Materialien für Druckaufschlusssysteme.

Dieser Film zeigt die Wirkungsweise der Mikrowellen auf den Aufschluss.

 

Beispiele aus der Mikrowellen-Chemie im Discover

 

Nucleophile Aromatische Substitution

In den aufgeführten Reaktionen wurden mittels nucleophiler aromatischer Substitution (SNAr) acht Verbindungen synthetisiert [1]. Beginnend vom aromatische Gerüst ergaben acht verschiedene Amine die jeweiligen heterocyclischen Zielverbindungen. Unter Mikrowelleneinwirkung waren die Reaktionen in 90 min. absolviert, während die klassischen Bedingungen bis zu 2 Tage in Anspruch nehmen .

Abb 5

 

O-Alkylierung von Phenolen

Die Mikrowellen-Synthese wirkt auch auf Festphasenreaktionen extrem zeitverkürzend. Zur Veranschaulichung der Effektivität wurde in der nebenstehenden Versuchsreihe eine Phenolverbindung mit unterschiedlichen Alkylbromiden umgesetzt. Unter klassischen Bedingungen benötigen diese Reaktionen zwischen einem und 7 Tagen. Im DiscoverTM ließen sich dieselben Umsetzungen innerhalb von nur 30 min. erreichen [1]. Analog zur oben dargestellten SNAr Reaktion wurden auch hier mit dem DiscoverTM höhere Ausbeuten erzielt.

Abb 6

 

Bignelli Synthese von Dihydropyrimidin

Zur nebenstehende Bignelli Synthese wird eine hohe pharmokologische Effizienz sowie eine Reihe von biologischen Einflüssen (antivirale, antitumore und antibakterielle Aktivitäten) berichtet. Mit konventioneller Beheizung benötigen diese Reaktionen bis zu 24 Stunden bis zur kompletten Umsetzung, allerdings mit geringen Ausbeuten. Im DiscoverTM ließ sich dieselbe Reaktion innerhalb von nur 5 Minuten mit Ausbeuten zwischen 60 – 90 % erreichen [1].

Abb 7

 

Literatur:

[1]        M. J. Collins, Drug Discovery at the Speed of Light, Presented at Drug Discovery Technology,

Boston, August 2001

 

Mehr Infos unter www.mikrowellen-synthese.de

Es war einmal…

Der vorteilhafte Einsatz von Mikrowellentechnik ist seit der Erteilung des Patentes im Jahre 1946 jedermann bekannt. Dabei begann der außerordentliche Verbreitungsgrad dieser Technologie am Anfang ganz gemächlich. Das wesentliche Einsatzgebiet war damals die Nachrichtentechnik. Erst seit den 60er Jahren nutzt man im Haushalt die Mikrowelle als schnelle Heizquelle für das Erwärmen von Lebensmitteln. Damit traten die Mikrowellengeräte als Tischgeräte ihren Siegeszug an. Bereits 1976 waren in 60 % der US-Haushalte Mikrowellengeräte in der Küche anzutreffen. In dieser Zeit erkannte Dr. Michael Collins die enormen Vorteile der Energieübertragung mittels Mikrowellen für zahlreiche Anwendungen im Laboralltag. So entwickelte Mikrowellen-Pionier Collins eine Reihe von unter­schiedlichen Mikrowellen-Laborsystemen und gründete 1978 die Fa. CEM. In der Folgezeit haben bis heute mikrowellenbeschleunigte Verfahren in weiten Bereichen des Laboralltages bereits Einzug gehalten und traditionelle Methoden abgelöst.

Allein in der organischen Synthese blieb der Einsatz von Mikrowellengeräten lange Zeit eine „exotische“ Anwendung – das Ölbad mit dem Rundkolben blieb Standardequipment.

Abb 1

Der Grund hierfür war einfach: Anfängliche Synthese-Versuche in umfunktionierten Haushaltgeräten oder in modifizierten Aufschlußgeräten scheiterten an der zu geringen Energiedichte, an der gepulsten Mikrowelleneinstrahlung, an der ungleichmäßigen Energieverteilung („Mikrowellen-Chaos“) und an der unzureichenden Sensortechnik um reproduzierbare Versuchsabläufe zu beschreiben. Nun steht aber auch für den Bereich der Life Sciences, der kombinatorischen Chemie und der allgemeinen organischen chemischen Synthese mit dem DISCOVER eine neue Generation von Mikrowellensystemen zur Verfügung, die speziell für die Anforderungen der chemischen Synthese entwickelt wurden.

Abb 2

 

Warum eigentlich Mikrowellen-Synthese?

Mikrowellenunterstützte Synthesen ermöglichen den Synthese-Chemikern ganz neue Wege zum gewünschten Produkt (Wirkstoff). Mit einem Höchstmaß an Flexibilität und bisher nicht vorhandenen Kontrollmöglichkeiten der Reaktionsparameter ermöglicht die Mikrowellen-Chemie ein direktes Einkoppeln der Energie in die gewünschten Reaktionen. In kürzester Zeit wird die notwendige Aktivierungsenergie der Reaktion zugeführt, was sich in der Beschleunigung gegenüber traditionellen Reaktionsbedingungen niederschlägt. So sind Zeitverkürzungen um den Faktor 100 bis 1000 keine Seltenheit. Die mikrowellenunterstützte Synthese ist zweifelsfrei der schnellste und der produktivste Weg zum gewünschten Wirkstoff. Über 1300 Literaturstellen mit stark zunehmender Tendenz berichten von den Möglichkeiten dieser Technologie [1]. Eine Literaturdatenbank der Mikrowellen-Synthesen finden Sie unter www.cemsynthesis.com

In vielen Labors wurden die Vorteile der mikrowellenbeschleunigten Synthese in Haushalts-Mikrowellen oder in „modifizierten“ Gastronomie-Mikrowellen bestätigt. Bereits Mitte der 80er Jahre berichteten Forscher von einer Reduzierung der Reaktionszeit von mehreren Stunden auf wenige Minuten [2, 3]. Der systematische Einsatz für Versuchsreihen scheiterte aber oft an den folgenden schlecht realisierten bzw. nicht vorhandenen technischen Grundlagen: Keine Druck- und Temperatursensoren; Keine Rührung; Gepulste Mikrowellenenergie; Ungleichmäßige Mikrowellenverteilung sowie eine zu geringe Energiedichte für kleine Volumina [4]. Alle diese technischen Nachteile führten zu unreproduzierbaren Versuchsbedingungen [5].

 

Die Lösung

Die neue fokussierteTM Mikrowellentechnologie von CEM ermöglicht die Synthese unter genau definierten und reproduzierbaren Bedingungen in der größten Mono-Mode-Mikrowellenkammer der Welt! Dabei wird kontinuierliche, ungepulste Mikrowellenstrahlung fokussiert auf die Reaktionspartner eingestrahlt. Eine gleichmäßige und homogene Mikrowellenenergiedichte ist so gewährleistet. Aufgrund der speziellen, von CEM patentierten geometrischen Bauform der Mono-Mode Mikrowellenkammer und der damit verbundenen Selbstregulierung des Mikrowelleneintrages kann jedes beliebige Reagenzienvolumen (1, 10 oder bis zu 100 ml) eingesetzt werden. Entgegen der üblichen Praxis bei älteren Technologien entfällt am DiscoverTM ein manuelles „Tuning“ am Mikrowellengerät, d. h. das Mikrowellengerät passt sich gezielt der Chemie an. Nur im DiscoverTM können drucklose, klassische Reaktionsbedingungen mit der Leistungsfähigkeit des fokussiertenTM Mikrowelleneintrags kombiniert werden. Dabei können die Standard-Glasbehälter wie z. B. Rundkolben mit einem Volumen von bis zu 125 ml beliebig eingesetzt werden. Typische Aufsätze wie z. B. Rückflusskühler oder Tropftrichter können in gewohnter Weise benutzt werden:

  • Optimierung von Reaktionen – Wirkstoff-Synthese bis zum Scale-Up
  • Zugabe von Reagenzien und Entnahme von Produkten möglich
  • Verwendung von Standard-Rundkolben, Rückflusskühlern, Tropftrichter und Rührer möglich
  • Klassische Reaktionsbedingungen im fokussiertenTM Mikrowellenfeld
  • Adaptoren der Mikrowellenkammer können für verschiedene Behälter einfach ausgetauscht werden

Abb 3

In Ergänzung zu den drucklosen Reaktionsbedingungen können im DiscoverTM auch Reaktionen in Druckbehältern bei erhöhten Temperaturen erfolgen. CEM liefert hierfür Druckbehälter mit einem Volumen von 10, 35 und 80 ml. Die Abdichtung erfolgt über ein Teflonseptum, welches zur Probenentnahme bzw. zur Zugabe von Edukten durchstochen werden kann. Druckreaktionen oberhalb des atmosphärischen Siedepunktes ermöglichen:

  • bisher nicht erreichte Aktivierungsenergien durch die Temperaturerhöhung
  • Wahl von alternativen Lösemitteln
  • Einsatzmöglichkeit von niedrigsiedenden Lösungsmitteln
  • Inerte Reaktionsbedingungen

Beide Behälter

Das DiscoverTM verfügt über eine ganze Reihe von Sensor- und Kontrollmechanismen um die Reaktionen sicher, reproduzierbar und kontrolliert ablaufen zu lassen. Wesentliche Reaktions­parameter sind die Echtzeitverfolgung von Druck und Temperatur, das schlagartige Abbrechen von Reaktionen durch spontane Abkühlung, das Kühlen während des Einwirkens der Mikrowellen auf die Reaktionspartner sowie das Rühren der Probe. Das DiscoverTM verfügt über eine spezielle Kühlfunktion um Reaktionen schlagartig abzubrechen. Dadurch werden unterwünschte Nebenreaktionen unterbunden und die Probe kann typischerweise nach nur 2 Minuten entnommen werden. Die spontane Abkühlung wird durch das Einleiten von Druckluft in die Mikrowellenkammer bewirkt. Durch das Entspannen der Druckluft wird der Reaktionsbehälter extrem schnell heruntergekühlt. Zur Erzielung des optimalen Wirkungsgrades wird die Druckluft über eine Düse direkt auf den Behälter gerichtet.

Abb 4

 

Literatur:

[1]        P. Lidström et al., Tetrahedron Lett. 2001, 57, 9225

[2]        R. Gedye et al., Tetrahedron Lett., 1986, 27, 279

[3]        R. J. Giguere, Tetrahedron Lett. 1986, 27, 4945-4948

[4]        B. C. Glass, A. P. Combs in: High-Throughput Synthesis. Practices and Principles, Chap. 4.6,

Marcel Dekker, New York 2001

[5]        D. M. P. Mingos und D. R. Baghorst, Chem. Soc. Rev. 1991, 20, 1-47

 

Mehr Infos unter www.mikrowellen-synthese.de

Gymnasium Altona Ÿ Hohenzollernring 57/61 Ÿ 22763 Hamburg

 

Die Maillard-Reaktion in der Synthesemikrowelle

 

Eine Arbeit von Laurence Heins und Henry Eckelmann für Jugend forscht

 

Lesen Sie die komplette von CEM unterstützte Forschungsarbeit :

 Die Maillard Reaktion in der Synthese-Mikrowelle