Category: Anwendungen & Problemlösungen

 

Schwermetallverunreinigung von scharfer Salsa Soße und Chilipulver

Der Verbrauch von botanischen Produkten hat in den letzten zwei Jahrzehnten deutlich zugenommen, da die Verbraucher immer mehr zu natürlichen und hochwertigen botanischen Produkten tendieren. Die Hauptanbauregionen der Gewürz- und Teeproduktion auf der ganzen Welt weisen aber weniger strenge Sicherheits- und Qualitätsstandards als in der EU und in den USA auf. Es wurde festgestellt, dass Produkte aus diesen Regionen eine Vielzahl von Verfälschungen und Verunreinigungen enthalten, einschließlich Schwermetallen und toxische Elementen. Für eine Untersuchung wurde diverse Gewürze scharfe Saucen in unterschiedlichsten Märkten gekauft. Nach dem kryogenen Vermahlen und Mikrowellenaufschluß wurden die messfertigen Proben mittels ICP-MS auf ihre Schwermetallkontamination hin untersucht.

Probenvorbereitung

Die Proben wurden mit einem CEM Mars 5 Mikrowellen-Druckaufschlussgerät aufgeschlossen:

· Easy Prep Gefäße und XP Gefäße

· 0,2 g Probe · 10 ml HNO3

· 1-2 Tropfen HF bei Proben mit hohem Siliciumdioxidgehalt

· 15 Minuten Rampe bis 210 ° C · 15 Minuten halten

IMG_1960

Materialien

SPEX CertiPrep-Standards:

– CLMS-1, CLMS-2, CLMS-3, CLMS-4 (Multi-Element-Lösungsstandards 1-4)

Reagenzien:

– Hochreine Salpetersäure

– Hochreine HF

 

Analyse

Agilent ICP-MS 7700:

– Meinhard Zerstäuber
Ergebnisse Das am häufigsten vorkommende Schwermetall für die roten Pfefferprodukte war Chrom, das in einer Chillipulver Probe bis zu 7 pg/g aufwies. Die Gehalte an Chrom reichten von 3,1 bis 7,0 pg/g. Arsen und Cadmium waren in derselben Probe enthalten, das die höchsten Chromwerte aufwies (1,2 pg/g Cd & 0,4 pg/g As). Blei wurde in dieser Probe mit weniger als 1 pg/g gefunden. Detailergebnisse in Abbildungen 1 – 3

 

Mikrowellen Aufschluss von Chili Pulver 1

Mikrowellen Aufschluss von Chili Pulver 2

In dieser Methodensammlung finden Sie 308 Aufschluss Methoden aus den Bereichen

Landwirtschaft,

Lebensmittel,

Öle,

Kunststoffe,

Abfall,

Abwasser,

Umwelt,

Geologie und Mineralogie,

Gebrauchsgegenstände,

klinische und biologische Proben,

Materialwissenschaften,

Metallurgie und Legierungen,

Farben und Beschichtungen,

Kosmetik,

Pharma und Biotech,

Filter und Emissionsschutz

zum Mikrowellen-Aufschluss im Mars 6

Aufschlussmethoden Mikrowellenaufschluss Mars 6

Methodensammlung (pdf): MetNote_MARS6_Compendium

Neuartige iPrep Behälter für Hochtemperatur-Aufschlüsse von organischen und anorganische Proben

Aufschlüsse im Druckbehälter bei ca. 300 °C für komplexe organische Proben, die aufgrund des Kohlenstoffgehaltes bis zu 100 bar Druck entwickeln können, erfordern besondere Anforderungen an die Behältertechnologie. Mit den iPrep Behältern ist es nunmehr möglich, Pharmawirkstoffe, Farbstoffe, Lebensmittel, Bitumen, Klebstoffe, Kunststoff, Öl,… etc. sicher und zuverlässig aufzuschließen.

Hohe Aufschlusstemperaturen benötigen auch refraktäre anorganische Materialien wie Dental-Legierungen, Carbide, Nitride, Aluminiumoxid, Keramiken, mineralogische Proben, Stähle, Katalysatoren, Oxide, Spinelle, etc. Dazu wurde im iPrep System ein besonderer Behälteraufbau mit neuartigen Werkstoffen im Zusammenspiel mit der Hochleistungskühlung und exakter Temperaturmessung im Mars 6 Mikrowellengerät realisiert. Der besondere Clou: Keine Berstscheiben, keine Federelemente, nur 2 Bauteile, also einfachste Bedienung! Kein anderes auf dem Markt befindliche Gerät benötigt so wenig Platz im Labor für Hochtemperaturaufschlüsse wie das Mars 6 mit den iPrep Behältern.

Mars 6

 

Die iPrep Gefäße sind hervorragend geeignet, um selbst hartnäckigste Proben wie z. B. diverse Chromoxide (siehe Bild) in einer Stunde schnell und komfortabel aufzuschließen.

 

Im EDGE Extraktionssystem werden in weniger als 10 min. unterschiedliche Referenzmaterialien (Sewage Sludge, Soil, Harbour Sediment) mit Lösemittel extrahiert. Der typische Lösemittelverbrauch beträgt 30 ml. Aus den Extrakten werden die Analyten HCB,  PCB 28, PCB 52, PCB 101, PCB 118, PCB 153, PCB 138 und PCB 180 analysiert.

Der Vergleich zur Soxhlet Extraktion und der Vergleich zum zertifizierten Gehalt  zeigen übereinstimmende Ergebnisse bei dieser neuen Extraktionstechnik:

Folie1

Folie2

Folie3

Folie4

 

 Mehr Infos unter www.loesemittel-extraktion.de

 

 

Evaluierung des ORACLE Fettanalysators erfolgreich abgeschlossen

CEM freut sich, den erfolgreichen Abschluss einer unabhängigen Studie des ORACLE Universellen Fettanalysators durch das akkreditierte französische Labor Actalia Cecalait bekannt zu geben. Das ORACLE ist der erste schnelle Fettanalysator, der absolut keine Methodenentwicklung erfordert und Fett in jeder unbekannten Nahrungsmittelprobe mit vergleichbaren Fettgehalten zu den Referenzmethoden analysieren kann. Mehrere Molkerei-/Milchprobenarten wurden in der Studie untersucht: Sahne, Milchpulver, verschiedene Käse, saure Sahne, Joghurt, Dessert und Eiscreme, in einer Bandbreite von 0,5 bis 45,0% Fett.

Ergebnisse Oracle 1

Actalia stellte fest, dass der ORACLE Fettanalysator in der Lage war, alle oben genannten Molkereiproben mit der gleichen Richtigkeit und besserer Genauigkeit im Vergleich zu den nasschemischen Extraktionstechniken Röse-Gottlieb, Weibull-Berntrop und Schmid-Bondzynski-Ratzlaff zu analysieren. Die Messdauer beträgt nur wenige Minuten und erfordert keinerlei Methodenentwicklung oder Kalibrierung. Insbesondere ergaben der Vergleich der ORACLE- und Nasschemie-Ergebnisse einen perfekten linearen Bestimmungskoeffizienten (R2) von 1,000. Actalia kam auch zu dem Schluss, dass die Wiederholbarkeit des ORACLE für alle Proben besser war als die Referenzchemie.

Ergebnisse Oracle 2

Actalia mit Sitz in Poligny, Frankreich, ist ein COFRAC-akkreditiertes Labor, das sich auf die Bereitstellung technischer und wissenschaftlicher Erkenntnisse für die Validierung und Vereinheitlichung von Analysenmethoden mit Expertise in der Molkereianalyse spezialisiert hat. Darüber hinaus ist Actalia sowohl Veranstalter von Ringversuchen als auch ein globaler Lieferant von SRMs für Milchprodukte (sekundäre Referenzmaterialien).

Seit seiner Markteinführung im Jahr 2016 hat das ORACLE eine breite Akzeptanz gefunden und wird weltweit in Lebensmittelproduktions- und Testlabors eingesetzt. Das System wurde mit dem IFT17 Food Expo Innovation Award ausgezeichnet, der die Zeit- und Kostenvorteile würdigt und den nachhaltigen Betrieb durch den Wegfall von Chemikalien heraushebt.

Der Vergleich zeigte die Universalität und Richtigkeit der ORACLE Methode im Bezug auf die Fett-Referenzgehalte: Abstract_Cecalait_27s_Newsletter_No_103_-_Oracle

 

Ergebnisse Oracle 3

 

Oracle Evaluierung Actalia

 

 

Sehen Sie die beispielhafte Fettmessung und Trocknung der Proben dieser Studie in diesem Film

Unter der Probenvorbereitung versteht man die Aufarbeitung der zu analysierenden Probe in eine für die Bestimmung der relevanten Substanz geeigneten Form. In der Analytik kommt den atomspektroskopischen Bestimmungsmethoden (AAS, ICP-OES, ICP-MS) eine große Be­deutung zu. Es ist jedoch erforderlich, daß die Probensubstanz in Lösung vorliegt. Aus diesem Grund folgt dem Homogenisieren und Trocknen fester Proben ein Aufschlussprozess. Das Ergebnis sollte eine vollständige Matrixzersetzung sein, bei dem Verluste des Analyten verhindert werden und dieser nachher unter Umständen nach Entfernung der Matrixelemente störungsfrei bestimmt werden kann. Bei den Aufschlußmethoden kann zwischen naßchemische Aufschlüssen, Schmelzaufschlüssen und Aufschlüssen durch Gasreaktion unterschieden werden. Die zu verwendende Aufschlußmethode wird je nach Erfordernis der Bestimmungsmethode ausgewählt.

Bei einem naßchemischen Aufschluß wird die feste Probensubstanz in Wasser, Säuren oder Säuregemischen gelöst. Dies kann sowohl in offenen als auch in geschlosse­nen Behältnissen durchgeführt werden.

Oftmals ist ein rückstandsfreies Lösen komplexer Matrizes jedoch nicht erreichbar, da die Aufschlusstemperatur unter Atmosphärendruck durch die Siedetemperatur des verwende­ten Lösungsmittels begrenzt ist. Als Alternative bieten sich sogenannte Druckaufschlüsse in statisch geschlossenen Systemen an, mit denen Aufschlüsse meistens mit Säuren unter drastischen Bedingungen durchgeführt werden können. Bedingt durch den höheren Druck stellt sich eine höhere Siedetemperatur ein, welches mit einer stärkeren Oxidationskraft der Aufschlusssäure einhergeht. Zudem werden Spurenverluste und Kontaminationen von außen vermieden. Druckaufschlüsse können nach der Art der Wärmeübertragung an die Aufschlußlösung un­terschieden werden. Man unterscheidet die konvektive Wärmeübertragung und die Einwir­kung von Mikrowellen, welche völlig unterschiedlichen Prinzipien unterliegen. Bei der konventionellen Aufheizung mit Heizplatten, Öfen oder metallischen Heizblocks, wird die Wärmeenergie von der geheizten Gefäßwand an die Lösung abgegeben, wo der Wär­meaustausch über Konvektion stattfand. Diese Übertragung ist nicht sonderlich effektiv, da die Energie nur über die im Verhältnis zur Masse kleinen Oberfläche abgegeben wird. Dies führt zu den langen Aufheizphasen bei der konventionellen Druckaufschlusstechnik.

 

Die Wärmeübertragung basiert auf der Wechselwirkung der elektromagnetischen Strah­lung mit heteropolaren Molekülen und ist umso stärker je größer das Dipolmoment bzw. das Dielektrikum der Stoffe ist. Es könnte so verstanden werden, daß die Mikrowellenenergie zum einen eine Rotations- und Schwingungsbewegung der Dipole und zum anderen eine be­schleunigte Bewegung von Ionen mit einer Zunahme der Stoßzahlen in der Aufschlußlö­sung fördert.

Dipolrotation

Bild1

 

Ionenleitung

Bild2

Es können jedoch nur ioni­sche oder polare Substanzen mit Hilfe der Mikrowellentechnik aufgeheizt werden. Mikro­wellentransparente Stoffe können, soweit sie chemisch resistent sind als Gefäßmaterialien verwandt werden. Ein Maß für die Ab­sorption von Mikrowellenenergie ist der sogenannte Dissipationsfaktor tan d, welcher den Vergleich von dialektischen Verlust  zur Dielektrizitätskonstante  darstellt. In der folgenden Tabelle ist ein Vergleich der Dissipationsfaktoren für verschiedene Aufschlußsäuren und Ge­fäßmaterialien wiedergegeben.

 

Aufschlusssäuren und Gefäßmaterialien

 

Material/ Substanz Siedetemperatur [°C] Dissipations-faktor [tan d]
Wasser 100 157000
HCl (36%) 109,5 8600
HF (48%) 108 11000
HNO3 120 11000
H2SO4 (96%) 338 13500
PTFE 0,017
PFA 0,017
Quarz 0,005

 

Die geringen Mikrowellenabsorptionsraten machen PTFE-Derivate, PFA und Quarz zu bevorzugten Materialien für Druckaufschlusssysteme.

Dieser Film zeigt die Wirkungsweise der Mikrowellen auf den Aufschluss.

 

Das Mikrowellen-Laborsystem MARS  ist speziell für den extrem hohen Probendurchsatz in der Analytik für Schwermetalle entwickelt worden. In Kombination mit der neuartigen Xpress Reaktionsbehälter-Technolgie können schnelle, vollständige und reproduzierbare Aufschlüsse realisiert werden.

Hoher Probendurchsatz und reproduzierbare Aufschlüsse sind typische Anforderungen in der Routineanalytik. Deshalb wird das MARS speziell für Säureaufschlüsse bei folgenden Probenarten eingesetzt:

  • Pflanzenproben
  • Tiergewebe
  • Fisch, Muscheln und maritime Proben
  • Sedimente, Boden und Schlamm
  • Abwasser
  • Lebensmittel
  • Düngemittel
  • Nährstoffe
  • Filter
  • Blut, Haare, Serum und Urin
  • Spielzeug und Bedarfsgegenstände
  • Mineralien und Erze
  • und viele weitere mehr!

Das MARS verfügt über neue berührungslose Sensortechnologien zur Druck- und Temperaturüberwachung in allen Behältern. Die integrierte Computersteuerung ermöglicht die Datenspeicherung und Steuerung via Smartphone und TabletPC. Bei der Gerätekonzeption wurde ein Höchstmaß an Bedienerkomfort und ein neuer Meilenstein hinsichtlich der Betriebssicherheit gesetzt. Der modulare Aufbau der Geräteserie MARS hält Investitionen in einem angepassten Rahmen für die benötigten Arbeitsprozesse, d. h. es ist lediglich eine Grundinvestition für den Einstieg notwendig. Für zukünftige Aufgaben kann die Mikrowellen-Arbeitsstation beliebig aufgerüstet werden.

Anwendungsbeispiel: Mikrowellenaufschluss von Spielzeug zur Messung des Schwermetalls Blei mit der ICP

Dieser Film zeigt den kompletten Arbeitsverlauf zur Untersuchung vom Schwermetall Blei im Spielzeug. Die Probe wird in einer Retsch Mühle vermahlen, dann im Mikrowellenaufschluss Gerät Mars Xpress aufgeschlossen und anschliessend mittels ICP auf den Bleigehalt hin vermessen.

Beispiele aus der Mikrowellen-Chemie im Discover

 

Nucleophile Aromatische Substitution

In den aufgeführten Reaktionen wurden mittels nucleophiler aromatischer Substitution (SNAr) acht Verbindungen synthetisiert [1]. Beginnend vom aromatische Gerüst ergaben acht verschiedene Amine die jeweiligen heterocyclischen Zielverbindungen. Unter Mikrowelleneinwirkung waren die Reaktionen in 90 min. absolviert, während die klassischen Bedingungen bis zu 2 Tage in Anspruch nehmen .

Abb 5

 

O-Alkylierung von Phenolen

Die Mikrowellen-Synthese wirkt auch auf Festphasenreaktionen extrem zeitverkürzend. Zur Veranschaulichung der Effektivität wurde in der nebenstehenden Versuchsreihe eine Phenolverbindung mit unterschiedlichen Alkylbromiden umgesetzt. Unter klassischen Bedingungen benötigen diese Reaktionen zwischen einem und 7 Tagen. Im DiscoverTM ließen sich dieselben Umsetzungen innerhalb von nur 30 min. erreichen [1]. Analog zur oben dargestellten SNAr Reaktion wurden auch hier mit dem DiscoverTM höhere Ausbeuten erzielt.

Abb 6

 

Bignelli Synthese von Dihydropyrimidin

Zur nebenstehende Bignelli Synthese wird eine hohe pharmokologische Effizienz sowie eine Reihe von biologischen Einflüssen (antivirale, antitumore und antibakterielle Aktivitäten) berichtet. Mit konventioneller Beheizung benötigen diese Reaktionen bis zu 24 Stunden bis zur kompletten Umsetzung, allerdings mit geringen Ausbeuten. Im DiscoverTM ließ sich dieselbe Reaktion innerhalb von nur 5 Minuten mit Ausbeuten zwischen 60 – 90 % erreichen [1].

Abb 7

 

Literatur:

[1]        M. J. Collins, Drug Discovery at the Speed of Light, Presented at Drug Discovery Technology,

Boston, August 2001

 

Mehr Infos unter www.mikrowellen-synthese.de

Es war einmal…

Der vorteilhafte Einsatz von Mikrowellentechnik ist seit der Erteilung des Patentes im Jahre 1946 jedermann bekannt. Dabei begann der außerordentliche Verbreitungsgrad dieser Technologie am Anfang ganz gemächlich. Das wesentliche Einsatzgebiet war damals die Nachrichtentechnik. Erst seit den 60er Jahren nutzt man im Haushalt die Mikrowelle als schnelle Heizquelle für das Erwärmen von Lebensmitteln. Damit traten die Mikrowellengeräte als Tischgeräte ihren Siegeszug an. Bereits 1976 waren in 60 % der US-Haushalte Mikrowellengeräte in der Küche anzutreffen. In dieser Zeit erkannte Dr. Michael Collins die enormen Vorteile der Energieübertragung mittels Mikrowellen für zahlreiche Anwendungen im Laboralltag. So entwickelte Mikrowellen-Pionier Collins eine Reihe von unter­schiedlichen Mikrowellen-Laborsystemen und gründete 1978 die Fa. CEM. In der Folgezeit haben bis heute mikrowellenbeschleunigte Verfahren in weiten Bereichen des Laboralltages bereits Einzug gehalten und traditionelle Methoden abgelöst.

Allein in der organischen Synthese blieb der Einsatz von Mikrowellengeräten lange Zeit eine „exotische“ Anwendung – das Ölbad mit dem Rundkolben blieb Standardequipment.

Abb 1

Der Grund hierfür war einfach: Anfängliche Synthese-Versuche in umfunktionierten Haushaltgeräten oder in modifizierten Aufschlußgeräten scheiterten an der zu geringen Energiedichte, an der gepulsten Mikrowelleneinstrahlung, an der ungleichmäßigen Energieverteilung („Mikrowellen-Chaos“) und an der unzureichenden Sensortechnik um reproduzierbare Versuchsabläufe zu beschreiben. Nun steht aber auch für den Bereich der Life Sciences, der kombinatorischen Chemie und der allgemeinen organischen chemischen Synthese mit dem DISCOVER eine neue Generation von Mikrowellensystemen zur Verfügung, die speziell für die Anforderungen der chemischen Synthese entwickelt wurden.

Abb 2

 

Warum eigentlich Mikrowellen-Synthese?

Mikrowellenunterstützte Synthesen ermöglichen den Synthese-Chemikern ganz neue Wege zum gewünschten Produkt (Wirkstoff). Mit einem Höchstmaß an Flexibilität und bisher nicht vorhandenen Kontrollmöglichkeiten der Reaktionsparameter ermöglicht die Mikrowellen-Chemie ein direktes Einkoppeln der Energie in die gewünschten Reaktionen. In kürzester Zeit wird die notwendige Aktivierungsenergie der Reaktion zugeführt, was sich in der Beschleunigung gegenüber traditionellen Reaktionsbedingungen niederschlägt. So sind Zeitverkürzungen um den Faktor 100 bis 1000 keine Seltenheit. Die mikrowellenunterstützte Synthese ist zweifelsfrei der schnellste und der produktivste Weg zum gewünschten Wirkstoff. Über 1300 Literaturstellen mit stark zunehmender Tendenz berichten von den Möglichkeiten dieser Technologie [1]. Eine Literaturdatenbank der Mikrowellen-Synthesen finden Sie unter www.cemsynthesis.com

In vielen Labors wurden die Vorteile der mikrowellenbeschleunigten Synthese in Haushalts-Mikrowellen oder in „modifizierten“ Gastronomie-Mikrowellen bestätigt. Bereits Mitte der 80er Jahre berichteten Forscher von einer Reduzierung der Reaktionszeit von mehreren Stunden auf wenige Minuten [2, 3]. Der systematische Einsatz für Versuchsreihen scheiterte aber oft an den folgenden schlecht realisierten bzw. nicht vorhandenen technischen Grundlagen: Keine Druck- und Temperatursensoren; Keine Rührung; Gepulste Mikrowellenenergie; Ungleichmäßige Mikrowellenverteilung sowie eine zu geringe Energiedichte für kleine Volumina [4]. Alle diese technischen Nachteile führten zu unreproduzierbaren Versuchsbedingungen [5].

 

Die Lösung

Die neue fokussierteTM Mikrowellentechnologie von CEM ermöglicht die Synthese unter genau definierten und reproduzierbaren Bedingungen in der größten Mono-Mode-Mikrowellenkammer der Welt! Dabei wird kontinuierliche, ungepulste Mikrowellenstrahlung fokussiert auf die Reaktionspartner eingestrahlt. Eine gleichmäßige und homogene Mikrowellenenergiedichte ist so gewährleistet. Aufgrund der speziellen, von CEM patentierten geometrischen Bauform der Mono-Mode Mikrowellenkammer und der damit verbundenen Selbstregulierung des Mikrowelleneintrages kann jedes beliebige Reagenzienvolumen (1, 10 oder bis zu 100 ml) eingesetzt werden. Entgegen der üblichen Praxis bei älteren Technologien entfällt am DiscoverTM ein manuelles „Tuning“ am Mikrowellengerät, d. h. das Mikrowellengerät passt sich gezielt der Chemie an. Nur im DiscoverTM können drucklose, klassische Reaktionsbedingungen mit der Leistungsfähigkeit des fokussiertenTM Mikrowelleneintrags kombiniert werden. Dabei können die Standard-Glasbehälter wie z. B. Rundkolben mit einem Volumen von bis zu 125 ml beliebig eingesetzt werden. Typische Aufsätze wie z. B. Rückflusskühler oder Tropftrichter können in gewohnter Weise benutzt werden:

  • Optimierung von Reaktionen – Wirkstoff-Synthese bis zum Scale-Up
  • Zugabe von Reagenzien und Entnahme von Produkten möglich
  • Verwendung von Standard-Rundkolben, Rückflusskühlern, Tropftrichter und Rührer möglich
  • Klassische Reaktionsbedingungen im fokussiertenTM Mikrowellenfeld
  • Adaptoren der Mikrowellenkammer können für verschiedene Behälter einfach ausgetauscht werden

Abb 3

In Ergänzung zu den drucklosen Reaktionsbedingungen können im DiscoverTM auch Reaktionen in Druckbehältern bei erhöhten Temperaturen erfolgen. CEM liefert hierfür Druckbehälter mit einem Volumen von 10, 35 und 80 ml. Die Abdichtung erfolgt über ein Teflonseptum, welches zur Probenentnahme bzw. zur Zugabe von Edukten durchstochen werden kann. Druckreaktionen oberhalb des atmosphärischen Siedepunktes ermöglichen:

  • bisher nicht erreichte Aktivierungsenergien durch die Temperaturerhöhung
  • Wahl von alternativen Lösemitteln
  • Einsatzmöglichkeit von niedrigsiedenden Lösungsmitteln
  • Inerte Reaktionsbedingungen

Beide Behälter

Das DiscoverTM verfügt über eine ganze Reihe von Sensor- und Kontrollmechanismen um die Reaktionen sicher, reproduzierbar und kontrolliert ablaufen zu lassen. Wesentliche Reaktions­parameter sind die Echtzeitverfolgung von Druck und Temperatur, das schlagartige Abbrechen von Reaktionen durch spontane Abkühlung, das Kühlen während des Einwirkens der Mikrowellen auf die Reaktionspartner sowie das Rühren der Probe. Das DiscoverTM verfügt über eine spezielle Kühlfunktion um Reaktionen schlagartig abzubrechen. Dadurch werden unterwünschte Nebenreaktionen unterbunden und die Probe kann typischerweise nach nur 2 Minuten entnommen werden. Die spontane Abkühlung wird durch das Einleiten von Druckluft in die Mikrowellenkammer bewirkt. Durch das Entspannen der Druckluft wird der Reaktionsbehälter extrem schnell heruntergekühlt. Zur Erzielung des optimalen Wirkungsgrades wird die Druckluft über eine Düse direkt auf den Behälter gerichtet.

Abb 4

 

Literatur:

[1]        P. Lidström et al., Tetrahedron Lett. 2001, 57, 9225

[2]        R. Gedye et al., Tetrahedron Lett., 1986, 27, 279

[3]        R. J. Giguere, Tetrahedron Lett. 1986, 27, 4945-4948

[4]        B. C. Glass, A. P. Combs in: High-Throughput Synthesis. Practices and Principles, Chap. 4.6,

Marcel Dekker, New York 2001

[5]        D. M. P. Mingos und D. R. Baghorst, Chem. Soc. Rev. 1991, 20, 1-47

 

Mehr Infos unter www.mikrowellen-synthese.de

Gymnasium Altona Ÿ Hohenzollernring 57/61 Ÿ 22763 Hamburg

 

Die Maillard-Reaktion in der Synthesemikrowelle

 

Eine Arbeit von Laurence Heins und Henry Eckelmann für Jugend forscht

 

Lesen Sie die komplette von CEM unterstützte Forschungsarbeit :

 Die Maillard Reaktion in der Synthese-Mikrowelle