Category: Anwendungen & Problemlösungen

Synthetisieren Sie schnell und sicher neue Moleküle und Verbindungen mit extrem schneller Reaktionsgeschwindigkeit und Flexibilität durch die mikrowellenunterstützte organische Synthese. Laden Sie unser neues Whitepaper herunter, um mehr zu erfahren:

Whitepaper Link

#MicrowaveSynthesis #DrugDiscovery

 

Online Seminar – Schnelle Muffelöfen für den Aschegehalt und zur Sulfat-Veraschung
25. November 2020

Die Bestimmung des Asche- bzw. Füllstoffgehaltes sowie die Sulfatveraschung ist in konventionellen Muffelöfen sehr arbeitsintensiv, dauert lange, erfordert häufig Abluftsysteme und Laborabzüge und kann gesundheitsgefährdend sein. Die schnellen Phoenix Black Muffelöfen schaffen hier Abhilfe.

Im kostenfreien Web-Seminar erläutert der Referent Ulf Sengutta das schnelle, sichere und einfache Arbeiten mit der Familie der neuen Phoenix Black Muffelöfen. Während der live Vorführung werden Proben im Phoenix Black verascht. Zudem können per Chat individuelle Fragen gestellt werden und es besteht die Möglichkeit der Bearbeitung von Kundenproben.

Um Ihnen die Terminplanung zu erleichtern, bieten wir das Web-Seminar am Mittwoch, den 25. November 2020 zu zwei verschiedenen Uhrzeiten an:

10.00 Uhr und 14.00 Uhr

Registrierung

In den letzten Jahren hat sich der Einsatz der Mikrowelle bei der Synthese von Peptiden mehr und mehr durchsetzen können. Zahlreiche Publikationen belegen, dass unter Mikrowelleneinwirkung gerade sehr schwierige Sequenzen gut synthetisierbar werden, was vor allem auf die Eliminierung der Aggregationsproblematik hydrophober Peptidketten zurückzuführen ist. Hervorzuheben ist, dass es im Mikrowellenfeld trotz thermischer Effekte zu einer Unterdrückung der Racemisierung kommt. In Verbindung mit einer geeigneten Capping / Tagging-Strategie lassen sich heutzutage auch Peptide mit mehr als 100 Aminosäuren an einem Stück synthetisieren.


Apparativ stehen dem Anwender dabei mittlerweile sowohl manuelle als auch vollautomatisierte Systeme zur Verfügung. Mit steigender Peptidlänge macht die Anwendung eines automatisierten Systems Sinn – nicht zuletzt aufgrund der höheren Zuverlässigkeit. Hierfür stehen mit der Liberty-Familie verschiedene vollautomatisierte Systeme zur Verfügung, die in den letzten Jahren software- und hardwaretechnisch soweit optimiert wurde, dass mittlerweile praktisch jede Art von Chemie auf einfache Art und Weise implementiert werden kann.

Monika Szefczyk

Dr. Monika Szefczyk, ist Forscherin im Labor von Prof. Dr. Lukasz Berlicki am Institut für Bioorganische Chemie der Wrocław University of Science and Technology. Sie traf sich mit CEM, um ihre Forschung zu Peptidfoldameren vorzustellen, die in der SARS-Cov-2-Hemmung angewendet werden. Prof. Dr. Berlickis Labor besitzt einen CEM Liberty Blue Mikrowellen-Peptidsynthesizer.

Lukasz Berlicki

Frage: Können Sie Hintergrundinformationen zur Berlicki-Forschungsgruppe liefern?

Dr. Szefczyk: Das Berlicki Lab ist eine der fünf Forschungsgruppen des Instituts für Bioorganische Chemie der Wrocław University of Science and Technology. Es wird von Professor Łukasz Berlicki geleitet und besteht aus sieben Forschern/innen und drei Doktoranden/innen. Unsere Forschung konzentriert sich auf drei Hauptthemen:

1) Struktur, biologische und katalytische Aktivität von Peptidfoldameren,

2) Synthese und Aktivität von Inhibitoren ausgewählter Enzyme und

3) Peptid-basierte Nanostrukturen.

Wir leiten 5 laufende Forschungsprojekte, die vom Nationalen Wissenschaftszentrum und der Polnischen Nationalen Agentur für akademischen Austausch mit einem Gesamtbetrag von mehr als 5 Mio. EURO finanziert werden.

Berlicki Lab

Frage: Was sind Ihre wichtigsten Forschungsziele?

Dr. Szefczyk: Wir arbeiten hauptsächlich an Peptidfoldameren – Oligomeren, die eine hohe Tendenz zur Faltung in stabile dreidimensionale Strukturen in Lösung aufweisen. Die Möglichkeit der rationalen Konstruktion strukturell ausgedehnter Moleküle bietet die Möglichkeit, Materialien mit zahlreichen Funktionalitäten herzustellen. Die Entwicklung einer rationalen Strategie zur Erzielung erweiterter proteinartiger foldamerer Strukturen (sogenannte foldamerische Miniproteine) ist eines unserer Hauptziele. Anschließend wenden wir die erhaltenen Strukturen zum Aufbau von Molekülen an, die katalytische oder biologische Aktivitäten aufweisen. Der Aufbau von Enzymmimetika liefert Katalysatoren für verschiedene Reaktionen und ermöglicht ein besseres Verständnis der Wirkung nativer Enzyme. Darüber hinaus synthetisieren wir Protein-Protein-Interaktionsinhibitoren, die möglicherweise in der Krebsimmuntherapie nützlich sind. Kürzlich haben wir uns auf die Gruppe der Peptidfoldamere konzentriert, die die Interaktion von menschlichem ACE2- und SARS-Cov-2-Virus-S-Protein hemmen können. Solche Verbindungen könnten den Viruseintritt in menschliche Zellen stoppen und Kandidaten für Arzneimittel gegen Covid-19 sein. Wir konzentrieren uns auch auf einen weiteren interessanten Aspekt von Peptidfoldameren, nämlich ihre Fähigkeit, durch kontrollierte Selbstaggregation Nanostrukturen zu bilden. Wir haben verschiedene Peptide mit Beta-Aminosäuren entworfen, synthetisiert, charakterisiert und daraus Nanofibrillen im Prozess der Selbstassoziation erhalten. Jetzt bemühen wir uns, verschiedene mikroskopische Techniken zu entwickeln, die der Charakterisierung erhaltener Nanostrukturen und Bionanomaterialien im Allgemeinen gewidmet sind.

 

Frage: Wie hat die Peptidsynthese im Liberty Blue Ihre Forschung verbessert?

Dr. Szefczyk: Am wichtigsten ist es, dass wir mit dem Liberty Blue die Synthesezeit erheblich verkürzen und die Kosten für Lösungsmittel und Abfall im Vergleich zu anderen automatisierten Synthesizern senken konnten. In unserem Fall ist der Unterschied signifikant, wenn man eine große Anzahl von Peptiden mit langen Sequenzen berücksichtigt, die wir in unserem Labor synthetisieren. Darüber hinaus konnten wir die Synthese von Peptiden mit sogenannten „schwierigen Sequenzen“ leicht optimieren.

Frage: Glauben Sie, dass das Liberty Blue für andere Wissenschaftler nützlich sein könnte?

Dr. Szefczyk: Wir würden den Liberty Blue als einfach zu verwendenden, zeit- und kostensparenden Synthesizer empfehlen, der es uns ermöglicht, Peptide mit guter Ausbeute und Reinheit zu erhalten. Erwähnenswert ist auch die Verfügbarkeit professioneller Unterstützung durch die technischen Spezialisten von CEM.

Frage: Wo sollten Chemiker nach weiteren Informationen zu Ihrer Forschung suchen?

Dr. Szefczyk: Wir sind auf Facebook und Twitter @berlickilab. Weitere Informationen finden Sie auch auf der Webseite unserer Abteilung: http://bioorganic.ch.pwr.wroc.pl/ oder in den ausgewählten Veröffentlichungen unten.

  1. Fortuna, P.; Linhares, B. M.; Purohit, T.; Pollock, J.; Cierpicki, T.; Grembecka, J.; Berlicki, Ł., Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction J. Med. Chem. 2020, 207, 112748.
  2. Drewniak, M.*; Węglarz-Tomczak, E*; Ożga, K.; Rudzińska-Szostak, E.; Macegoniuk, K.; Tomczak, J. M.; Bejger, M.; Rypniewski, W.; Berlicki, Ł. *contributed equally., Helix-loop-helix peptide foldamers and their use in the construction of hydrolase mimetics. Chem. 2018, 81, 356.
  3. Szefczyk, M.; Węglarz-Tomczak, E.; Fortuna, P.; Krzysztoń, A.; Rudzińska-Szostak, E.; Berlicki, Ł., Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting Angew. Int. Ed. 2017, 56, 2087.
  4. Rudzińska-Szostak, E.; Berlicki, Ł., Sequence engineering to control the helix handedness of peptide foldamers Eur. J. 2017, 23, 14980.
  5. Magiera-Mularz, K.; Skalniak, L.; Zak, K. M.; Musielak, B.; Rudzinska-Szostak, E.; Berlicki, Ł.; Kocik, J.; Grudnik, P.; Sala, D. Zarganes-Tzitzikas, T.; Shaabani, S.; Dömling, A.; Dubin, G.; Holak, T. A., Bioactive Macrocyclic Inhibitors of the PD-1/PD-L1 Immune Checkpoint Chem. Int. Ed. 2017, 56, 13732.

 

 

HZG-Wissenschaftler entwickeln Verfahren zur Messung von Metall in Mikroplastik

Über die Anreicherung und den Transport persistenter organischer Schadstoffe durch Mikroplastik gibt es vergleichsweise viele Studien. Doch die Daten über die Anreicherung von für die Umwelt giftigen Metallen sind sehr rar und bisweilen wissenschaftlich unzuverlässig. Ein Team aus Wissenschaftlern des Helmholtz-Zentrums Geesthacht – Zentrum für Material- und Küstenforschung (HZG) hat jetzt gemeinsam mit Kollegen der Bundesanstalt für Gewässerkunde und der Christian-Albrechts-Universität zu Kiel (CAU) ein Verfahren entwickelt, mit dem entsprechende Metalle in Mikroplastik zuverlässig nachgewiesen werden können.

20200827140341_00001

Metalle aus der Plastikproduktion und der Umwelt nachweisbar

Probengefäß

In diesen Gefäßen werden die Proben aufbereitet und anschließend den Mikrowellen ausgesetzt. Danach werden die Materialien mit einem Massenspektrometer untersucht. Foto: HZG/Steffen Niemann

Mit dem neuen Verfahren können in den Mikroplastikpartikeln sowohl die Metalle nachgewiesen werden, die in der Plastikproduktion eingesetzt werden, als auch jene, die aus der Umwelt, beispielsweise aus Meerwasser, an die Partikel gebunden werden können. Zum Beispiel wird das Halbmetall Antimon oft als Katalysator für die Produktion von PET eingesetzt und ist dementsprechend im Plastik selbst zu finden. Schwermetalle wie Cadmium und Blei, die für viele Organismen giftig sind, können ebenfalls durch die Produktion enthalten sein, aber auch aus der Umwelt an die Oberfläche der Partikel gebunden werden.

Lesen Sie hier den detaillierten Artikel

https://www.hzg.de/public_relations_media/news/086784/index.php.de

The development of new—cheaper, more efficient, more sustainable, and more reliable—functional materials with useful properties calls for ever-improving, smart, and innovative synthesis strategies. A multitude of inorganic compounds are already used as energy materials, i.e., electrodes, catalysts, permanent magnets, and many more are considered highly promising for these and similar applications. Innovative synthesis techniques are developed, resulting in new compounds as well as known ones with unique structures and morphologies. Here, we will discuss the nonconventional solid-state methods, microwave heating and spark plasma sintering, highlighting their potential for the preparation of a plethora of inorganic compounds. Thermoelectric and magnetic materials are chosen as two examples of energy materials that are relevant for several different areas, such as waste heat recovery, energy generation, and refrigeration. The goal is to provide an overview of the inorganic compounds, ranging from intermetallics to chalcogenides and oxides, which have been prepared using these two nonconventional synthesis techniques. Furthermore, the reaction conditions as well as key properties regarding their thermoelectric and magnetic behavior are summarized.

DWuQtg-X0AAemy5

mehr Infos Link

Webinar: Vollautomat für die Proteomik, Proteinverdau, Probenaufreinigung und MALDI-Spotting

Donnerstag, 2.Juli 2020, 12:00 Uhr

 Lernen Sie den DigestPro Automaten für den Proteinverdau und MS-Probenvorbereitung kennen

Die Identifikation von Proteinen über Massenspektrometrie (MS) erfordert die Zerlegung in definierte Peptidfragmente durch enzymatischen oder chemischen Verdau. Die manuelle Durchführung solcher Experimente limitiert den Probendurchsatz und birgt das Risiko von Kontaminationen.

Mit dem CEM DigestPro führen wir die zuvor von der Firma INTAVIS vertriebene DigestPro-Produktlinie fort, welche sich seit mehr als 20 Jahren bewährt hat für die Automatisierung von Proteinverdau-Methoden und nachfolgende Techniken zur Probenvorbereitung für die Massenspektrometrie. Eine Automatisierung dieser komplexen Protokolle mit Hilfe des kompakten DigestPro Vollautomaten erhöht nicht nur den Probendurchsatz, die geschlossene Bauweise und ein speziell entwickeltes Verfahren zum Reagenzien-Austausch garantieren auch ein kontaminationsfreies Arbeiten. Im DigestPro können sowohl für In-Gel- als auch In-Lösung-Protokolle bis zu 96 Proben simultan gewaschen, reduziert, alkyliert und verdaut werden. Im Anschluss an den Verdau können die Peptide optional unter Verwendung von Reverse-Phase-Pipettenspitzen vollautomatisch entsalzen und aufkonzentriert werden. Weitere Optionen sind das Überführen in Autosampler-Vials oder das Spotten auf MALDI-Targets. Durch die Verwendung laboreigener Puffer und Lösungen entstehen keine zusätzlichen laufenden Kosten. Der DigestPro wird durch eine intuitiv bedienbare Software gesteuert, die eine individuelle Anpassung eigener Protokolle erlaubt. Einen komfortablen Einstieg in die Automatisierung ermöglicht unsere Sammlung dokumentierter Standardprotokolle.

Registrierung

Products_Proteom_DigestPro_MSi_workspace-e1488550053218

DigestPro 2

Webinar: In Situ Hybridisierung und Immunhistochemie

Donnerstag, 25. Juni 2020, 12:00 Uhr

Lernen Sie den ISH/ICH Färbeautomaten InsituPro für Gewebeschnitte und Whole Mounts kennen

Die Technik der In-Situ-Hybridisierung (ISH) ermöglicht die spezifische Detektion von DNA- oder RNA-Sequenzen und damit die Analyse von zeitlichen und räumlichen Gen-Expressionsmustern direkt im Gewebe. Mit der Methode der Immunhistochemie (IHC) lassen sich dagegen Proteine oder andere Strukturen nachweisen und lokalisieren.

Eine manuelle Durchführung dieser Experimente ist jedoch sehr zeit- und arbeitsintensiv, da die Gewebe in vielen Einzelschritten mit verschiedenen Lösungen behandelt und teilweise bei exakten Temperaturen inkubiert werden müssen. Zudem besteht bei der großen Zahl an manuellen Pipettierschritten immer die Gefahr von Flüchtigkeitsfehlern.

Mit dem CEM InsituPro wird die zuvor von der Firma INTAVIS vertriebene InsituPro-Produktlinie fortgeführt, welche sich seit mehr als 20 Jahren als Komplettlösung für die vollautomatisierte In-Situ-Hybridisierung und Immunhistochemie etabliert hat.

Registrierung

InSituPro