Tag: Aufschluss

Neuartige iPrep Behälter für Hochtemperatur-Aufschlüsse von organischen und anorganische Proben

Aufschlüsse im Druckbehälter bei ca. 300 °C für komplexe organische Proben, die aufgrund des Kohlenstoffgehaltes bis zu 100 bar Druck entwickeln können, erfordern besondere Anforderungen an die Behältertechnologie. Mit den iPrep Behältern ist es nunmehr möglich, Pharmawirkstoffe, Farbstoffe, Lebensmittel, Bitumen, Klebstoffe, Kunststoff, Öl,… etc. sicher und zuverlässig aufzuschließen.

Hohe Aufschlusstemperaturen benötigen auch refraktäre anorganische Materialien wie Dental-Legierungen, Carbide, Nitride, Aluminiumoxid, Keramiken, mineralogische Proben, Stähle, Katalysatoren, Oxide, Spinelle, etc. Dazu wurde im iPrep System ein besonderer Behälteraufbau mit neuartigen Werkstoffen im Zusammenspiel mit der Hochleistungskühlung und exakter Temperaturmessung im Mars 6 Mikrowellengerät realisiert. Der besondere Clou: Keine Berstscheiben, keine Federelemente, nur 2 Bauteile, also einfachste Bedienung! Kein anderes auf dem Markt befindliche Gerät benötigt so wenig Platz im Labor für Hochtemperaturaufschlüsse wie das Mars 6 mit den iPrep Behältern.

Mars 6

 

Die iPrep Gefäße sind hervorragend geeignet, um selbst hartnäckigste Proben wie z. B. diverse Chromoxide (siehe Bild) in einer Stunde schnell und komfortabel aufzuschließen.

 

Unter der Probenvorbereitung versteht man die Aufarbeitung der zu analysierenden Probe in eine für die Bestimmung der relevanten Substanz geeigneten Form. In der Analytik kommt den atomspektroskopischen Bestimmungsmethoden (AAS, ICP-OES, ICP-MS) eine große Be­deutung zu. Es ist jedoch erforderlich, daß die Probensubstanz in Lösung vorliegt. Aus diesem Grund folgt dem Homogenisieren und Trocknen fester Proben ein Aufschlussprozess. Das Ergebnis sollte eine vollständige Matrixzersetzung sein, bei dem Verluste des Analyten verhindert werden und dieser nachher unter Umständen nach Entfernung der Matrixelemente störungsfrei bestimmt werden kann. Bei den Aufschlußmethoden kann zwischen naßchemische Aufschlüssen, Schmelzaufschlüssen und Aufschlüssen durch Gasreaktion unterschieden werden. Die zu verwendende Aufschlußmethode wird je nach Erfordernis der Bestimmungsmethode ausgewählt.

Bei einem naßchemischen Aufschluß wird die feste Probensubstanz in Wasser, Säuren oder Säuregemischen gelöst. Dies kann sowohl in offenen als auch in geschlosse­nen Behältnissen durchgeführt werden.

Oftmals ist ein rückstandsfreies Lösen komplexer Matrizes jedoch nicht erreichbar, da die Aufschlusstemperatur unter Atmosphärendruck durch die Siedetemperatur des verwende­ten Lösungsmittels begrenzt ist. Als Alternative bieten sich sogenannte Druckaufschlüsse in statisch geschlossenen Systemen an, mit denen Aufschlüsse meistens mit Säuren unter drastischen Bedingungen durchgeführt werden können. Bedingt durch den höheren Druck stellt sich eine höhere Siedetemperatur ein, welches mit einer stärkeren Oxidationskraft der Aufschlusssäure einhergeht. Zudem werden Spurenverluste und Kontaminationen von außen vermieden. Druckaufschlüsse können nach der Art der Wärmeübertragung an die Aufschlußlösung un­terschieden werden. Man unterscheidet die konvektive Wärmeübertragung und die Einwir­kung von Mikrowellen, welche völlig unterschiedlichen Prinzipien unterliegen. Bei der konventionellen Aufheizung mit Heizplatten, Öfen oder metallischen Heizblocks, wird die Wärmeenergie von der geheizten Gefäßwand an die Lösung abgegeben, wo der Wär­meaustausch über Konvektion stattfand. Diese Übertragung ist nicht sonderlich effektiv, da die Energie nur über die im Verhältnis zur Masse kleinen Oberfläche abgegeben wird. Dies führt zu den langen Aufheizphasen bei der konventionellen Druckaufschlusstechnik.

 

Die Wärmeübertragung basiert auf der Wechselwirkung der elektromagnetischen Strah­lung mit heteropolaren Molekülen und ist umso stärker je größer das Dipolmoment bzw. das Dielektrikum der Stoffe ist. Es könnte so verstanden werden, daß die Mikrowellenenergie zum einen eine Rotations- und Schwingungsbewegung der Dipole und zum anderen eine be­schleunigte Bewegung von Ionen mit einer Zunahme der Stoßzahlen in der Aufschlußlö­sung fördert.

Dipolrotation

Bild1

 

Ionenleitung

Bild2

Es können jedoch nur ioni­sche oder polare Substanzen mit Hilfe der Mikrowellentechnik aufgeheizt werden. Mikro­wellentransparente Stoffe können, soweit sie chemisch resistent sind als Gefäßmaterialien verwandt werden. Ein Maß für die Ab­sorption von Mikrowellenenergie ist der sogenannte Dissipationsfaktor tan d, welcher den Vergleich von dialektischen Verlust  zur Dielektrizitätskonstante  darstellt. In der folgenden Tabelle ist ein Vergleich der Dissipationsfaktoren für verschiedene Aufschlußsäuren und Ge­fäßmaterialien wiedergegeben.

 

Aufschlusssäuren und Gefäßmaterialien

 

Material/ Substanz Siedetemperatur [°C] Dissipations-faktor [tan d]
Wasser 100 157000
HCl (36%) 109,5 8600
HF (48%) 108 11000
HNO3 120 11000
H2SO4 (96%) 338 13500
PTFE 0,017
PFA 0,017
Quarz 0,005

 

Die geringen Mikrowellenabsorptionsraten machen PTFE-Derivate, PFA und Quarz zu bevorzugten Materialien für Druckaufschlusssysteme.

Dieser Film zeigt die Wirkungsweise der Mikrowellen auf den Aufschluss.

 

Das Mikrowellen-Laborsystem MARS  ist speziell für den extrem hohen Probendurchsatz in der Analytik für Schwermetalle entwickelt worden. In Kombination mit der neuartigen Xpress Reaktionsbehälter-Technolgie können schnelle, vollständige und reproduzierbare Aufschlüsse realisiert werden.

Hoher Probendurchsatz und reproduzierbare Aufschlüsse sind typische Anforderungen in der Routineanalytik. Deshalb wird das MARS speziell für Säureaufschlüsse bei folgenden Probenarten eingesetzt:

  • Pflanzenproben
  • Tiergewebe
  • Fisch, Muscheln und maritime Proben
  • Sedimente, Boden und Schlamm
  • Abwasser
  • Lebensmittel
  • Düngemittel
  • Nährstoffe
  • Filter
  • Blut, Haare, Serum und Urin
  • Spielzeug und Bedarfsgegenstände
  • Mineralien und Erze
  • und viele weitere mehr!

Das MARS verfügt über neue berührungslose Sensortechnologien zur Druck- und Temperaturüberwachung in allen Behältern. Die integrierte Computersteuerung ermöglicht die Datenspeicherung und Steuerung via Smartphone und TabletPC. Bei der Gerätekonzeption wurde ein Höchstmaß an Bedienerkomfort und ein neuer Meilenstein hinsichtlich der Betriebssicherheit gesetzt. Der modulare Aufbau der Geräteserie MARS hält Investitionen in einem angepassten Rahmen für die benötigten Arbeitsprozesse, d. h. es ist lediglich eine Grundinvestition für den Einstieg notwendig. Für zukünftige Aufgaben kann die Mikrowellen-Arbeitsstation beliebig aufgerüstet werden.

Anwendungsbeispiel: Mikrowellenaufschluss von Spielzeug zur Messung des Schwermetalls Blei mit der ICP

Dieser Film zeigt den kompletten Arbeitsverlauf zur Untersuchung vom Schwermetall Blei im Spielzeug. Die Probe wird in einer Retsch Mühle vermahlen, dann im Mikrowellenaufschluss Gerät Mars Xpress aufgeschlossen und anschliessend mittels ICP auf den Bleigehalt hin vermessen.

Ende Dezember 2014 hat die ICH auf ihrer Website die finale Version der ICH Q3D „Guideline for Elemental Impurities“ veröffentlicht. Die Leitlinie zu metallischen Verunreinigungen in Arzneimitteln ist als folgerichtige Ergänzung zu den Dokumenten ICH Q3A (Impurities in New Drug Substances), ICH Q3B (Impurities in New Drug Products) und ICH Q3C (Guideline for Residual Solvents) zu sehen. Diese neue Richtlinie erfordert einen Säureaufschluss der pharmazeutischen Proben, gefolgt von der spektrometrischen Messung der Elementgehalte.

CEM hat mit den neuen iPrep Hochtemperatur-Aufschlussbehältern im Mikrowellen-Druckaufschlussgerät Mars 6 iWave eine Neuentwicklung vorgestellt, die speziell für die Fragestellungen der Pharmaindustrie geeignet ist. Bei Temperaturen von bis zu 300 °C können in kurzer Zeit schwierige aromatische Ringstrukturen restkohlenstofffrei aufgeschlossen werden. Außerdem können extrem hohe Einwaagen von kohlenstoffreichen Proben, wie z. B. Fischölkapseln von bis zu 2 g problemlos im iPrep/Mars 6iWave aufgeschlossen werden.

Diese Applikationsbeschreibung erläutert diese neuartige Technologie und ihre Möglichkeiten.

ApNote_MARS6_iPrep_Difficult_API

 

Mars6_iWave iPrep

CEM stellt diese neue Methode im Rahmen der bundesweiten Seminarreihe vor:

Dienstag, 7. November – Kamp-Lintfort (bei Duisburg, im Hause CEM)

Donnerstag, 09. November – Potsdam

Freitag, 10. November – Leipzig

Dienstag, 14. November – Singen (am Bodensee)

Mittwoch, 15. November – Waldbronn (bei Karlsruhe, im Hause Agilent)

Dienstag, 21. November – Hamburg

Mittwoch, 22. November – Braunschweig

Dienstag, 28. November – München

Donnerstag, 30. November – Frankfurt

http://www.cem.de/documents/seminare_kurse/tagessem_aufschluss.htm

Für die Analyse von Schwermetallen und Nährstoff-Elementen in Babynahrung und anderen Lebensmitteln ist ein Mikrowellenaufschluss von einer hohen Probeneinwaage im Gramm-Maßstab von Vorteil. Einerseits wird damit die Repräsentativität der Probenmenge erhöht und andererseits können mit der hohen Probeneinwaage auch Spektrometer mit einer schlechteren Nachweisgrenze für die Elementbestimmung verwendet werden.

In diesem Film zeigen wir den Mikrowellenaufschluss von 5 g unterschiedlicher Lebensmittel (Banane, Bohne, Kartoffel und Kürbis) zusammen in einem Aufschlusslauf. Ermöglicht wird dieser Aufschluss im Mars 6 durch die neuartige iWave Temperaturkontrolle aller Proben. Für hohen Probendurchsatz sorgen die Xpress Behälter, so das bis zu 40 Lebensmittelproben in nur 30 min. aufgeschlossen werden können.

 

MARS6_Photos_Lab_47

 

Film: Mikrowellenaufschluss von 5 g Babynahrung im Mars 6

 

Alle Details zu diesem Mikrowellen-Aufschluss sind in dieser Application Note beschriebe: CEM_Baby_Food_Application_Note_Revised

CEM_Baby_Food_Application_Note_Revised_1

CEM_Baby_Food_Application_Note_Revised_2

CEM_Baby_Food_Application_Note_Revised_3

 

 

 

Zusätzlich wurden Vitaminproben als Nahrungsergänzungsmittel im Mars 6 aufgeschlossen. Vitamin_Application_Note

Vitamin_Application_Note_1

Vitamin_Application_Note_2

Vitamin_Application_Note_3