Author: cem_user

 

Holz ist ein nachwachsender Rohstoff, der von jeher aus volkswirtschaftlicher und wissenschaftlicher Sicht eine große Bedeutung besitzt. Holz ist Konstruktionsmaterial, Additiv bzw. Füllstoff in der Kunststoffindustrie und auch Brennstoff. Holzmehl kann grundsätzlich in der Landwirtschaft eingesetzt werden wenn dort Wirkstoffe eingebunden sind, die langsam freigesetzt werden sollen. Danach wird das Holzmehl durch Pilze und Mikroorganismen leicht abgebaut.  Für eine nachhaltige Anwendung von Holzgegenständen wie Fensterrahmen, Türen, Gartenmöbel stört der leichte Schimmelbefall bei Feuchtigkeit und die oft geringe Dimensionsstabilität bei unterschiedlicher Luftfeuchte. Klassisch wird Holz daher mit Ölen hydrophobiert sowie auch mit Holzschutzfarbe gegen die Schimmelbildung lasiert.

Es sind die vielen freien OH Gruppen der im Holz vorhandenen Zellulose verantwortlich für die oft störende Wasseraufnahme bis zu ca. 20 Gew.%. Eine sehr elegante Methode der Holzmodifizierung stellt die Veresterung der freien OH Gruppen mit z.B. Essigsäureanhydrid dar. Diese öffnet den Weg zur nachhaltigen Stabilisierung von Holz gegen Bewitterung (z.B.: Acetylholz) sowie zur Anbindung von Pflanzenschutzmitteln mit dem Ziel, eine intelligent kontrollierte Freisetzung der Wirkstoffe zu ermöglichen. Es ist bei Fungiziden z.B. notwendig, bei hohen Feuchtegraden in höherer Menge zur Verfügung zu stellen als bei Trockenheit. Genau diese Anforderung erfüllt das quellbare wirkstoffhaltige Holzmehl.

Um die genannten Verbesserungen und Erweiterungen bei der Holzanwendung durch chemische Modifizierung zu realisieren, ist die Entfernung des Wasseranteils essentiell. Wasser konkurriert bei der Reaktion der Zellulose-OH Gruppen und stört daher die Umsetzung. Hier hat es sich gezeigt, dass die MW-Trocknung im SAM-255 von z.B. Holzmehl – physikalisch bedingt – hervorragend geeignet ist. Es wird im Gegensatz zur klassischen Trocknung nicht nur ein erheblicher Zeitvorteil erzielt sondern auch das Holz selbst gegen Verkohlung geschont. Während die klassische Heiz-Methode unspezifisch agiert, wird mittels MW Bestrahlung im Mikrowellen-Trockenschrank SAM-255 im ersten Schritt das über viele H-Brücken an die Zellulose gebundene Wasser in Librationen versetzt und gezielt verdampft. Das zurückbleibende trockene Holz ist weniger sensitiv gegenüber der MW Bestrahlung, da das Wasser fehlt. Klassisch dagegen geht das Heizen weiter und führt zu chemischen Abbaureaktionen.

IMG_0005

Mittels MW unterstützter Synthese im Discover kann im weiteren Schritt im Labormaßstab die gewünschte Veresterung mit z.B. Säureanhydrid erfolgen.

Forschungsziele sind daher allgemein Veresterungen von MW-getrocknetem Holz mit

* Essigsäure bzw. Fettsäure zur Stabilisierung gegen Bewitterung  und zur Verbesserung der Dimensionsstabilität von Holzgegenständen

* Chemische Anbindung von Wirkstoffen für die Landwirtschaft zur kontrollierten Freisetzung

Um diesen Zielen rasch näher zu kommen, werden diese Laborversuche durch MW-Geräte erfahrungsgemäß erheblich beschleunigt

Die genannte und erprobte MW-Anwendung bei Holz-Forschung lässt sich unmittelbar auf andere Pflanzenstoffe ausdehnen. Beispielsweise fallen im Mittelmeerraum Olivenkerne in großen Mengen an. Diese können gemahlen und ebenfalls vorteilhaft chemisch verestert werden und z.B. in der Kosmetikindustrie Anwendung finden als Ersatz für „Mikroplastik“, das nicht in den Kläranagen zurückgehalten wird und die Weltmeere verunreinigt.

Im tierischen Bereich wären die Chitin-Panzer von Schalentieren aus dem Meer zu nennen, die ebenfalls in großen Tonnagen anfallen. Hier gelten grundsätzlich ähnliche Anforderungen bei der Trocknung und der chemischen Modifizierung wie bei Holz.

 

Prof. Dr. Dr. h.c. Helmut Ritter

Mikrowellenaufschlüsse zur Elementbestimmung sind aufgrund der vielfältigen Einsatzmöglichkeiten im Laboralltag nicht mehr wegzudenken. Für nahezu alle Probenarten wurden Behältersysteme sowie Meß- und Regeltechnik entwickelt, um sicher und reproduzierbar zu arbeiten. Lediglich für den Aufschluß von Mikroproben, also Proben im Maßstab von wenigen µg oder µl, d. h. einzelne Tröpfchen oder Körnchen, fehlte bislang das nötige Equipment.
DiscoverSP (1)
Nun hat CEM für den Einsatz im Mikrowellenaufschlußsystem Discover SP-D für die verschiedensten Anwendungen wie Zellproben, Fingernägel, Haare, Blut und Gewebe/Biopsien sowie Urin eine Speziallösung entwickelt. In einem besonders kleinen Quarzbehälter werden beispielweise 50 µg Probe mit 200 µl Salpetersäure in nur 5 Minuten Aufschlusszeit aufgeschlossen. Der Quarzbehälter zeichnet sich durch eine hohe Reinheit und einfache Reinigung und damit verbunden das Verhindern von Memoryeffekten aus. Hinzu kommt eine Minimierung von Fehlerquellen durch das Auffüllen im Quarzgefäß bis zur Füllmarke und ein Bedienerkomfort durch das Verwenden im Autosampler der ICP-MS.
Unbenannt
DiscoverSPD_Ivana klein

Mit dem Thema „Gefährliches Grillen – Wie Aluschalen Fleisch und Fisch belasten“ beschäftigt sich am 1.6.2016 das ARD Magazin Plusminus um 21.45 Uhr.

Mariniertes Fleisch auf der Alu-Grillschale grillen jedes Wochenende Tausende. Doch Salz und Säure in den Marinaden lösen das Aluminium. Das ergeben Labortests im Auftrag von „Plusminus“. Warnhinweise dazu fehlen.

Quelle „Plusminus“: Bratwürste, Bauchfleisch, marinierte Steaks: Die Kleingärtner im hessischen Pohlheim grillen immer mit Aluschalen, nie direkt auf dem Rost. Und in der Aluschale liegt immer öfter fertig mariniertes Fleisch. „Plusminus“ ist am Samstagmorgen vor einem Einkaufscenter in Wiesbaden. Am Wochenende wird gegrillt. Wir schauen den Kunden in den Einkaufskorb. Tatsächlich wird häufig mariniertes Fleisch verwendet. Doch ist das Grillen mit Aluminium wirklich gesünder? Wir kaufen Aluschalen bei Discountern und Supermärkten, fünf Produkte in allen Preislagen.

 Bei der Aluschale „Julia“ von Globus und bei „Grillmeister“ von Lidl finden wir keinerlei Warnhinweise. Bei Rewe steht: „Die Grillschalen ‚nicht für die Aufbewahrung und das Abdecken von sehr sauren oder salzigen Lebensmitteln‘ verwenden.“ Edeka spricht sogar explizit von „nicht gesundheitsschädlich“. Nur bei Toppits lesen wir: Grillpfannen dürfen „nicht mit säure- oder salzhaltigen Lebensmitteln in Berührung kommen“. Nur bei einem Produkt finden wir einen Warnhinweis.
Aluminium und Marinade – eine gefährliche Mischung
Marinaden lösen Aluminium aus der Grillschale

Dass Aluminium und säurehaltige Marinade eine gefährliche Mischung sind, weiß Spitzenkoch Frank Brunswig. Bei dem Grillprofi kommen die beliebten Aluschalen nur heute für unsere Stichprobe auf den Rost. Brunswig erklärt: „Es ist natürlich so, wenn Säure in der Marinade drin ist und wir kommen mit Aluminium in Verbindung, dann kann sich Aluminium ins Lebensmittel lösen.“

Wie viel Aluminium geht aus der Grillschale in das Essen über? Profi-Koch Brunswig grillt für uns: Fertig mariniertes Fleisch, einen eingelegten Grillkäse, Hähnchen und Schnitzel werden mit Fertigmarinaden aus dem Supermarkt gewürzt. Und der frische Lachs wird gesalzen und mit Zitronensaft beträufelt. Insgesamt zehn beliebte Grill-Variationen legt Frank Brunswig für uns auf. Und sie gehen abgepackt in einer Kühlbox ins Lebensmittellabor. In einer Woche werden Wolfram Wendler und sein Team das Ergebnis haben.

 Tipps der Verbraucherzentrale
Durch stark säure- und salzhaltige Lebensmittel oder Kontakt mit anderen Metallen kann sich Aluminium aus der Folie lösen und ins Lebensmittel übergehen, schreibt die Verbraucherzentrale. Saures wie Apfelstücke, Zitronen, Essiggurken und Salziges wie Feta, Salzhering, Wurst und Schinken gehöre nicht in Aluminiumfolie, weder zur Aufbewahrung noch zur Zubereitung! (Weitere Tipps der Verbraucherzentrale sind in der rechten Spalte verlinkt.)

Das Ergebnis ist alarmierend

Zu Aluminium gibt die Europäische Lebensmittelbehörde diese Empfehlung ab: Pro Woche nicht mehr als ein Milligramm Aluminium pro Kilo Körpergewicht aufnehmen. Das bedeutet für einen 70 Kilo schweren Menschen eine maximale Tagesdosis von zehn Milligramm. „Plusminus“ trifft Toxikologen. Wir wollen wissen: Was ist an Aluminium so gefährlich und vor allem in welchen Mengen?

 Der Toxikologe und Allgemeinarzt Peter Jennrich meint: „Wir können Aluminium über die Luft aufnehmen, über Lebensmittel, über Medikamente, über Kosmetika und auch übers Wasser.“ Edmund Maser, Toxikologieprofessor an der Universität Kiel sagt: „Man kann selbst natürlich gar nicht abschätzen, wie viel Aluminium man aufnimmt. Aber man sollte in allen möglichen Situationen des Alltags versuchen, die Aluminiumaufnahme zu verringern.“ Das Grillen mit Aluschalen aber steigert die Belastung enorm. Die „Plusminus“-Laboranalyse zeigt ein erschreckendes Ergebnis: 16 von 20 Proben – darunter Fleisch, Fisch und Käse – weisen deutlich erhöhte Alu-Rückstände auf. Wolfram Wendler, Lebensmittelchemiker bei Arotop, stellt fest: „Als Gesamtresultat, über alle Produkte, kann man davon ausgehen, dass sich der Aluminiumwert um das Doppelte bis Dreifache beim Grillen auf Aluschalen erhöht.“

Warnhinweise sollten aufgenommen werden!

Das marinierte Hähnchen geht von 3,4 Milligramm nach dem Grillen auf der Edeka-Schale auf 9,1 hoch. Das sind knapp 170 Prozent mehr. Das eingelegte Schweine-Schnitzel steigt von 4,5 Milligramm nach dem Grillen mit der Rewe-Schale auf 12,6. Das sind plus 167 Prozent! Beim Lachs mit Salz und Zitronensäure messen wir statt 2,7 Milligramm anfangs nach dem Grillen mit der Toppits-Schale 10,6 Milligramm. Das sind fast 300 Prozent mehr. Den mit Abstand höchsten Wert gibt es beim Käse von Lidl. Noch vor dem Grillen misst das Labor hier knapp 21 Milligramm Aluminium.

Die Laboruntersuchungen erfolgten mittels Mikrowellen-Aufschluss im Mars Xpress. Hier ein Ausschnitt aus dem Trailer des MorgenMagazins moma:

Phönix und Mars

Dazu wird die Grillwurst in die Mars Xpress Druckgefässe eingewogen, mit Salpetersäure versetzt und in kürzester Zeit im Mars Xpress aufgeschlossen.

Probe einwiegen

Die Messung des Aluminiumgehaltes erfolgt nach dem Aufschluss mittel Atom-Spektroskopie. Eine Vorankündigung für diesen Beitrag lief im MorgenMagazin moma der ARD am 1.6.2016.

Mehr Informationen zum Druckaufschluss-Gerät Mars 6 mit den Xpress Gefässen hier….

Den gesamten Beitrag in „plusminus“ finden Sie hier…

Mars Xpress

 

Die Sulfatasche-Bestimmung ist ein wichtiger Kontrollparameter bei der Qualitätskontrolle laufender Produktionen und der Eingangskontrolle von Rohstoffen. Problematisch ist jedoch die Zeitintensität der Analyse, da das Ergebnis erst Stunden später vorliegt und somit ein schnelles Eingreifen in die laufende Produktionsabläufe verhindert. Einen Zeitvorteil schafft die in diesem Artikel vorgestellte Methode mit dem schnellsten Muffelofen der Welt – Phönix SAS, die das Ergebnis unter der Berücksichtigung aller relevanten Normen innerhalb von kurzer Zeit liefert. Zudem können kritische Proben, die unter klassischen Bedingungen spritzen und schäumen und somit viel Handarbeit beinhalten, mit dem Phönix SAS problemlos schnell und automatisch bearbeitet werden.

 

Historie

Die Bestimmung der bei der Verbrennung von organischen Substanzen auftretenden Rückstände zählt schon seit neun Jahrzehnten zu den elementaren Reinheitsprüfungen von Arzneistoffen. Bereits das DAB 5 (Deutsches Arzneimittelbuch) von 1910 und das DAB 6, das 1926 in Kraft trat, enthielten weitgehend gleichlautende Vorschriften zur Durchführung von Analysen zur Bestimmung des Aschegehaltes. Mit dem dritten Nachtrag zum DAB 6 wurde 1959 die Prüfung der Sulfatasche als neue Analysenmethode in die pharmazeutischen Laboratorien eingeführt. Analoge Entwicklungen fanden beim Japanischen Arzneimittelbuch, bei den amerikanischen Vorschriften USP und beim Eurpäischen Arzneibuch Ph. Eur. statt. Die Bestimmung des Sulfatasche Gehaltes hat sich seitdem bei Eingangskontrollen von Rohstoffen und bei der Qualitätssicherung von laufenden Produktionen einen Platz als wichtige analytische Kenngröße gesichert. In den letzten Jahren wurden auch für Mineralölprodukte, Kautschuk, PVC, Elastomere und eine Vielzahl von Kunststoffen die Sulfatasche als wichtige Analysenmethode zur QS vorgeschrieben (DIN 53568, Teil 2 sowie ISO 247, Rubber – Determination of ash).

 

Klassische Analytik wie zu Liebigs Zeiten

Die schwarze Masse kocht und brodelt. Das weiße Porzellanschälchen vibriert leicht auf dem Tisch aus Draht. Die gelblich gefärbten Flammen heizen ihm ordentlich ein. Feucht ist die Luft und rundherum regnet es pechschwarzen Ruß. Diese eher unheimliche Szene beschreibt nichts anderes als den relativ einfachen Prozess der Sulfatveraschung. Unter Veraschungen versteht man per Definition die thermische Zersetzung kohlenwasserstoffhaltiger Produkte, wobei die anorganischen Bestandteile zurück bleiben.

Abbildung 1 Keine Vorveraschung mehr nötig

Die Sulfataschebestimmung ist bedingt durch die einzelnen Arbeitsschritte ein mühseliger und langwieriger Prozess und zudem für den Bediener äußerst unangenehm. Das Probengut wird dabei in einem Porzellan- oder Platintiegel mit Schwefelsäure versetzt, danach auf offener Flamme vorverascht und anschließend im konventionellen Muffelofen bei ca. 600 °C bzw. 800 °C (je nach Vorschrift) verascht. Neben den aufwendigen Arbeitsschritten (dauert bis zu 12 h) ist das Handling mit der abrauchenden Schwefelsäure äußerst umständlich und gesundheitsbeeinträchtigend. Durch unterschiedliche Bediener wurden auch schwankende Ergebnisse bei Mehrfachbestimmungen beobachtet. Nach der Beendigung des Schwefelsäureabrauchens sind vielfach aufwendige Reiningsarbeiten am Abzug vorzunehmen. Besonders bei schäumenden, quellenden und spritzenden Proben muß der Anwender die Reaktion beobachten, rechtzeitig den Tiegel von der Flamme wegziehen und warten, bis die Probe wieder weiter bearbeitet werden kann. Verpasst der Anwender den richtigen Moment, schäumt die Probe aus dem Tiegel und die bisherige Arbeit ist zu verwerfen – sprich: die Analyse muß von vorn beginnen.

 

Die Alternative

Eine Alternative bezüglich der Schnelligkeit, des Arbeitsschutzes, der Automatisation für kritische Proben und des Bedienerkomforts stellt das CEM-Sulfat-Veraschungssystem Phönix SAS dar. Die komplette Veraschung inklusive Vorveraschung wird im Veraschungssystem Phönix SAS durchgeführt, d. h. einfachstes und vor allem sicheres Handling für den Anwender. Durch die „Ofen-im-Ofen-Technik“ des Phönix SAS in Kombination mit einer Absaugung der Schwefelsäuredämpfe aus dem Veraschungseinsatz wird eine doppelte Absaugung der teilweise toxischen Verbrennungsprodukte gewährleistet. Die Veraschungsdauer verkürzt sich deutlich auf ca. 60 Minuten bei gleichzeitiger Veraschung von bis zu 15 Proben. Dabei wird die Probe im Tiegel mit H2SO4 versetzt und in den Phönix SAS gegeben. Mit dem Start der Methode heizt das Phönix SAS innerhalb von 10 min. auf 250 °C auf und hält diese Temperatur präzise für 10 Minuten konstant. Während dieser Zeit findet die Vorveraschung im Mikrowellenofen statt. Anschließend erfolgt automatisch die weitere Erhitzung auf 600 °C (bzw. 800 °C) statt, die dann für 20 min. konstant gehalten wird. Durch die genauen und reproduzierbaren Temperaturrampen kann ein Verspritzen oder Überschäumen von kritischen Proben verhindert werden.

Phönix SAS

Die besondere Arbeitssicherheit und der Bedienerkomfort des Phönix SAS wird durch eine spezielle Absaugtechnik gewährleistet, die CEM auch in anderen Produkten erfolgreich verwendet. Dabei führt aus dem Veraschungseinsatz mit den zu bearbeitenden Proben ein Quarzrohr zu einer Abscheide- und Neutralisationseinrichtung, bestehend aus Waschflaschen und Aktivkohlefilter. Die Rauchgase werden dabei mittels einer Vakuumpumpe abgesaugt und in den Waschflaschen mit NaOH neutralisiert. Der Bediener ist dabei keiner Exposition mit den Verbrennungsprodukten ausgesetzt und durch die Aktivkohlefilter zudem vor Geruchsbelästigungen geschützt. Die Anordnung dieser Neutralisationseinrichtung ist wartungsarm und einfach zu bedienen. Damit werden die Anforderungen der ISO 14000 zur Emissionsverminderung erfüllt. Die Raumluft und somit auch der Anwender werden nicht belastet (Arbeitsschutz) und die Installation braucht unter keinem Abzug zu erfolgen. Für die unterschiedlichen Applikationen steht eine Vielzahl von Zubehör, z. B. spezielle Veraschungstiegel oder eine Temperatur-Kalibriereinheit für die Prüfmittelüberwachung (IQ & OQ) zur Verfügung.

 

Studie an kritischen Proben

C. Hinz untersuchte spezielle Proben, die unter klassischen Bedingungen mit Vorveraschung und konventionellem Muffelofen schäumen, spritzen und aus dem Tiegel quellen. Als Modelsubstanzen wurden Laktose, Azelainsäure, Megestrolacetat und Phthalazin ausgewählt.

Phthalazin Derivat schäumend

 

Phthalazin Derviat PilzEs wurde eine Methode für das Phönix SAS ausgearbeitet, bei der jede Probe mit Schwefelsäure versetzt wird und direkt bei Raumtemperatur in den Phönix Ofen gegeben wird. Anschließend wird im Phönix SAS automatisch ohne manuelle Arbeit die Probe mit der Säure langsam auf 550 °C erhitzt und dabei vorverascht. Danach erfolgt das weitere Aufheizen auf die Endtemperatur von 600 °C und die Veraschung findet bis zur Gewichtskonstanz statt. Alle Modellsubstanzen werden ohne Probenverlust durch spritzen, schäumen oder quellen sanft im Phönix Muffelofen verascht.

Megestrolacetat problemlos

Veröffentlichung: Efficiency improvement for sulfated ash determination by usage of a microwave muffle furnace

Movie Phönix SAS

Movie Re-Qualifikation IQ/OQ

RTDCAL

Movie Platin-Tiegel können eingesetzt werden

Platinschalen im Phönix

Mehr Infos: www.sulfatasche.de

 

Die EU regelt mit den Verordnungen zu RoHS und WEEE die Analytik von elektronischen Bauteilen:

* WEEE: Directive 2002/96/EC on Waste Electrical and Electronic Equipment

* RoHS: Directive 2002/95/EC on the Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment

Auto_Platine_4

Gegenstand der Betrachtung in beiden Richtlinien sind die Elektro– und Elektronik-Altgeräte

Das Ziel der WEEE ist:

Vermeidung und Reduktion von Abfällen,

Wiederverwendung, Recycling, Verwertung

Das Ziel der RoHS ist:

zu WEEE begleitende Stoffverbote und –beschränkungen

Angleichung der Rechtsvorschriften der Mitgliedsstaaten

Gesundheitsschutz

umweltgerechte Verwertung und Beseitigung von Elektronikschrott

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

Elektro– und Elektronikgeräte im Sinn der Richtlinien sind:

Geräte, die zu ihrem ordnungsgemäßen Betrieb elektrische Ströme und elektromagnetisch Felder benötigen, …..

….und für den Betrieb mit Wechselstrom von höchstens 1000 V bzw. Gleichstrom von höchstens 1500 V ausgelegt sind

 

Anhang 1B: Auflistung von Geräten innerhalb

der Kategorien (beispielhaft)

  1. Haushaltsgroßgeräte

Große Kühlgeräte, Kühlschränke, Waschmaschinen, Wäschetrockner,…

  1. Haushaltskleingeräte

Staubsauger, Bügeleisen, Kaffeemaschinen, Rasierapparate, Wecker, Armbanduhren,…

  1. IT- und Kommunikationssysteme

Großrechner, Drucker, PC‘s/Laptops Taschenrechner, Faxgeräte, Telefone,…

  1. Geräte der Unterhaltungselektronik

Radiogeräte, Fernsehgeräte, Videokameras, Videorekorder, Hi-Fi-Anlagen,…

  1. Beleuchtungskörper

Leuchten in Leuchtstofflampen, stabförmige Leuchtstofflampen, Entladungslampen,…

  1. Elektrische und elektronische Werkzeuge (mit Ausnahme ortsfester industrieller

Großwerkzeuge)

Bohrmaschinen, Sägen, Nähmaschinen, Fräsen,…

  1. Spielzeug sowie Sport- und Freizeitgeräte

El. Eisenbahnen/Autorennbahnen, Videospielkonsolen, Videospiele, Fahrradcomputer,…

  1. Medizinische Geräte (mit Ausnahme aller implantierten und infizierten Produkte)

Geräte für Strahlentherapie, Kardiologiegeräte, Dialysegeräte, Beatmungsgeräte,…

  1. Überwachungs– und Kontrollinstrumente

Rauchmelder, Heizregler, Thermostate, Überwachungs- und Kontrollinstrumente,…

  1. Automatische Ausgabegeräte

Heißgetränkeautomaten, Automaten für Flaschen oder Dosen, Geldautomaten,…

Kabel

RoHS: Was ist eigentlich verboten?

Artikel 4 „Vermeidung

Die Mitgliedstaaten stellen sicher, dass ab dem 1. Juli 2006 neu in Verkehr gebrachte Elektro– und Elektronikgeräte kein

Blei,

Quecksilber,

Cadmium,

sechswertiges Chrom,

polybromiertes Biphenyl (PBB) bzw. polybromierten Diphenylether (PBDE)

enthalten.

Sobald wissenschaftliche Erkenntnisse vorliegen, beschließen das Europäische Parlament und der Rat ….., weitere gefährliche Stoffe zu verbieten und durch umweltfreundlichere Alternativen zu substituieren, die mindestens das gleiche Schutzniveau für den Verbraucher gewährleisten

 

Es wurden folgende Grenzwerte für die Analyten festgelegt:

Analyt                                                    Grenzwert [mg/kg]

Blei                                                                1000

Quecksilber                                                  1000

Cadmium                                                         100

Chrom (VI)                                                   1000

Polybromierte Biphenyle (PBB)                1000

Polybromierte Diphenylether (PBDE)     1000

mainboard_1

Beispielhafte Probenarten sind Kabel, Platinen, Elektronische Bauteile und Kunststoffgehäuse. Wir haben Kunststoff Standard-Referenzmaterialen mit dem Mars Mikrowellenaufschluss Gerät nach folgendem Aufschlussprogramm aufgeschlossen und anschliessend spektrometrisch auf ihren Elementgehalt untersucht.

MARS6_Photos_Lab_47

Zert Kunststoffproben

Referenzmaterialien

ERM – EC 680 Polyethylen

IRMM VDA 1, Sicolen Yellow, PE

IRMM VDA 2, Sicolen Orange, PE

IRMM VDA 3, Sicolen Red, PE

IRMM VDA 4, Sicolen Bordeaux, PE

 

Aufschlussbedingungen:

Ø Einwaage: 0,2 g vom Standardreferenzmaterial

Ø Säure: 10 ml Salpetersäure

Ø Aufheizzeit: 10 min

Ø Aufschlusstemperatur: 200 °C

Ø Haltezeit: 15 min

Ø ergibt eine Aufschlußzeit von 25 min. plus 15 min. Abkühlzeit

 

Die Richtigkeit des Verfahrens zeigt sich durch die gute Übereinstimmung der Messwerte mit den zertifizierten Gehalten der Referenzmaterialien sowohl bei niedrigen wie auch bei hohen Konzentrationen.

 

Abb 7 Kunststoff EC 680 Abb 8 Kunststoff EC 680 Abb 9 Kunststoff VDA 1 Abb 10 Kunststoff VDA 2 Abb 11 Kunststoff VDA 3 Abb 12 Kunststoff VDA 4

Die Verabschiedung der Richtlinien und Verordnung „Restriction of Hazardous Substances (RoHS) sowie Abfälle aus der Elektro- und Elektronik-Altgeräten (WEEE)“ durch die Europäischen Union (EU) ergab ein Problem. Während für die Messung der Schwermetalle Pb, Cd, Hg und Cr (VI) der Mikrowellen-Aufschluss eine etablierte Methode darstellt, gab es keine zuverlässige und kostengünstige Methode zur Prüfung der Additive polybromierte Biphenyle (PBB) und polybromierte Diphenylether (PBDE). NSL Analytical löste das Problem durch die Entwicklung einer MASE Technik (Microwave Accelerated Solvent Extraction = Mikrowellenbeschleunigte Lösemittel Extraktion) zur Extraktion von PBB und PBDE aus Polymeren mit nachfolgender Analyse durch GC-MS. Die Einsparungen an Zeit und Kosten (Arbeit, Lösungsmittelkosten und Entsorgung) durch die Mikrowellenmethode MASE waren enorm, während 99%ige Wiederfindung der Additive PBB und PBDE aus Probengrößen von nur 0,5 g ermöglicht wurde.

Microwave Extraction von PBB und PBDE

 

Am 4. September 2016 erschien im ZDF folgender Beitrag zum Recycling von Elektroschrott:

Mars Xpress Mikrowellen Aufschluss 2

Das Mikrowellen-Aufschlussgerät Mars Xpress wird zum Aufschluss mit anschliessender Schwermetallbstimmung eingsetzt. 

Seit dem Ende der 90er Jahre hat die United States Environmental Protection Agency (US-EPA) die Verwendung der SW-846 Methode 3546 für die Extraktion von unterschiedlichen organischen Verbindungen aus festen Matrizen mit MASE (mikrowellenbeschleunigte Lösemittel Extraktion) untersucht. In den letzten 15 – 20 Jahren haben die Anwendungen für diese Technik deutlich zugenommen und die Gerätetechnik wurde hinsichtlich des Bedienerkomforts und des Probendurchsatzes weiter entwickelt. Die Beschreibung eines mikrowellenbeschleunigten Lösemittel-Extraktionsverfahren (Methode 3546) wurde im Jahr 2008 abschließend reguliert. Dabei wird eine feste Probe mit einem Lösungsmittelgemisch in einem verschlossenen (geschlossenen) Behälter mit Mikrowellenenergie unter temperaturgeregelten Bedingungen erwärmt. Die Temperatur wird deutlich über den atmosphärischen Siedepunkt des Lösungsmittels erhöht und dadurch wird die Extraktion beschleunigt. Die Zeitverkürzung geht von typischerweise vielen Stunden im Soxhlet hin zu wenigen Minuten im Mikrowellensystem. Der Lösemittelverbrauch bei der mikrowellenbeschleunigten Extraktion beträgt nur 25 bis 50 ml pro Probe und spart somit enorm Kosten ein. Typische Analyten sind: Pestizide und Herbizide, PAKs und PCBs, Phenole, Dioxine und Furane

EPA 3546

 

Akinlua, A., Jochmann, M. A., & Schmidt, T. C. (2015). Ionic Liquid as Green Solvent for Leaching of Polycyclic Aromatic Hydrocarbons from Petroleum Source Rock. Industrial & Engineering Chemistry Research, 54(51), 12960–12965. doi:10.1021/acs.iecr.5b03367 beschreiben den Einsatz der Mars 6 Mikrowelle zur schnellen Extraktion von PAHs

 

Die American Society for Testing and Materials (ASTM) ist eine internationale Standardisierungsorganisation, die für 3 Verfahren ebenfalls die Mikrowelle als Probenvorbereitungsmethode standardisiert hat:

• ASTM 5765-05 (2010) ist die Standardmethode zur Lösungsmittelextraktion von TPH (Mineralöl-Kohlenwasserstoffe) aus Böden und Sedimenten. Die Bodenprobe oder die Sedimentprobe wird mit Aceton oder Hexan in einem verschlossenen Gefäß mit Mikrowellenerwärmung auf eine Extraktionstemperatur von 150 ° C gebracht, um einen Extrakt zur Analyse durch Gaschromatographie (GC) oder Gravimetrie zu erhalten.

• ASTM D6010-12 ist die Standardmethode für organischen Verbindungen aus festen Matrices. Die Boden-, Sediment-, Schlamm- oder Abfallprobe wird bei 115 ° C in einem Aceton-Hexan-Gemisch extrahiert, um anschließend halbflüchtige oder flüchtige organische Verbindungen durch GC oder GC-MS analysieren. Diese Methode reduziert die Probenvorbereitungszeit, den Lösungsmittelverbrauch und die Betriebskosten.

• ASTM D7210-13 ist die Standardmethode für die Extraktion von Additiven/Zusatzstoffen in Polyolefin-Kunststoffen. Dabei werden phenolische Antioxidantien, Phosphit-Antioxidantien, UV-Stabilisatoren, antistatische Mittel und Gleitmittel aus gemahlenen Polyolefin-Kunststoffen extrahiert und anschließend analysiert. Phthalate werden hauptsächlich als Weichmacher verwendet, um die Flexibilität und Haltbarkeit eines Produktes zu erhöhen, stehen aber im Verdacht der Gesundheitsgefährdung. Die Consumer Product Safety Commission (CPSC) hat die Testmethode: CPSC-CH-C1001-09.3 zur Bestimmung der Phthalate im April 2010 herausgegeben. Damit werden Phthalate in Kinderspielzeug und Babyartikeln analysiert. Das Testverfahren verwendet eine Mikrowellen-Extraktion basierend auf der EPA-Methode 3546 an.

LCGC5_i3

Das Prinzip der MASE, mikrowellenbeschleunigten Lösemittelextraktion

Die Extraktionsmethode umfasst das Erhitzen einer festen Probe mit einem Lösungsmittel mittels Mikrowellenenergie um die Extraktionsgeschwindigkeit zu beschleunigen. Die Extraktion wird üblicherweise in einem geschlossenen Gefäß unter temperaturgeregelten Bedingungen durchgeführt. Dies stellt eine signifikante Temperaturerhöhung über dem atmosphärischen Siedepunkt des Lösungsmittels dar und beschleunigt die Extraktionskinetik deutlich. Die dazu erforderlichen Geräte unterscheidet man in Multi-Mode- und Mono-Mode-Mikrowellengeräte. Moderne Multi-Mode Mikrowellengeräte wie das Mars 6 vermögen eine große Anzahl gleichzeitiger Extraktionen durchzuführen. So können bis zu 40 Proben mit den Xpress Extraktionsbehältern in kurzer Zeit gleichzeitig extrahiert werden. Das Mars 6 besitzt eine Bibliothek mit vordefinierten Methoden und die Software hat die Fähigkeit, die Anzahl der Proben zu zählen und den Behältertyp automatisch zu erkennen. Somit kann die Extraktion mit nur einem Knopfdruck – „One-Touch“ gestartet werden.

LCGC5_i1

Frühere Extraktionsbehälter bestanden aus vielen Baugruppen, die eher schwerfällig zu montieren waren und zudem konnten nur 12 bis 14 Proben gleichzeitig bearbeitet werden. Zum Verschluss der Behälter wurde ein Drehmomentschlüssel verwendet. Die neueste Extraktionsbehälter Technologie im Mars 6 hat jetzt nur noch drei Komponenten – ein Gefäßkörper, eine Kegeldichtung und eine Kappe – das vereinfacht die Montage der Xpress Behälter ganz ohne Werkzeug. LCGC5_i2

Mono-Mode-Mikrowellengeräte arbeiten die Extraktionen sequentiell nacheinander ab wie z. B. das Discover. Das Discover besteht aus einer Mikrowellenkammer mit einem relativ kleinen „fokussierten“ Hohlraum und häufig aus einem Autosampler. Damit werden die Proben in typischerweise nur 10 min. extrahiert und es können unterschiedlich Proben nacheinander schnell abgearbeitet werden. Dieser sequentielle Ansatz im Discover bietet mehr Flexibilität als bei einem Batch-style-System wie dem Mars 6.

LCGC5_i6

Beide Systeme extrahieren mittels Mikrowellenenergie die Proben-Lösungsmittelgemische bei erhöhter Temperatur und Druck, unter kontrollierten Bedingungen mit Rühren. Das Discover kann aber aufgrund seiner Konzeption auch mit Multi-Purpose-Autosamplern und Chromatographiegeräten wie GC oder HPLC gekoppelt werden.

GERSTEL_FAMEs_detail

 
Neue Anwendungsbereiche

Quecksilber Speziation: Die Gesamtquecksilberkonzentration in einer Probe gibt kein genaues Bild für ihre Wirkung in der Umwelt. Die genaue Verteilung der Quecksilberspezies gibt ein verbessertes Verständnis mit entsprechenden Schlussfolgerungen zur Bioverfügbarkeit, Verteilung in der Nahrungskette, Toxizität usw. Im Jahr 2013 veröffentlichten Leng und Mitarbeiter einen Artikel mit dem Titel „Spezies Analyse von Quecksilber in Sedimenten durch HPLC nach Mikrowellenunterstützter Extraktion“. Die Autoren beschreiben die Kombination von mikrowellenunterstützter Extraktion der Proben mit anschließender HPLC-VGAFS Bestimmung. Es wurden ausreichend niedrige Nachweisgrenzen von MeHg +, EtHg + und Hg2 + in Sedimentprobe erzielt. Die Nachweisgrenzen waren 0,013 ug / L, 0,022 ug / l und 0,011 ug / L für die einzelnen Quecksilberspezies. Die Methode wurde anhand von zwei zertifizierten Referenzmaterialien IAEA-405 und ERM-CC580 überprüft,- die gute Übereinstimmungen mit dem zertifizierten Wert ergaben.

Anti-Oxidantien: Es gibt mögliche positive Beeinflussungen der Gesundheit durch antioxidative Verbindungen, die das Risiko von Herz-Kreislauf-Erkrankungen und bestimmten Krebsarten senken. Im Jahr 2011 untersuchten Mathur und Mitarbeiter die MASE im Vergleich zu herkömmlichen Lösungsmittelextraktionstechniken für das Screening von Pflanzenextrakten hinsichtlich der antioxidativen Aktivität. Bei einer Extraktionstemperatur von 80 °C mit einer 20 minütigen Haltezeit wurde mit Methanol als Extraktionslösungsmittel die MASE Technik an 20 g Pflanzenproben optimiert. Die Extrakte wurden für invitro antioxidative Aktivitäten gescreent. Die Ergebnisse zeigten, dass die gewonnenen Extrakte aus der MASE Technik eine stark antioxidative Aktivität im Vergleich zu den Extrakten der traditionellen Methode aufweisen.

Active Pharmaceutical Ingredients: Die Freisetzung von pharmazeutischen Wirkstoffen (APIs) aus festen Darreichungsformen ist innerhalb der Formulierungen zu validieren. Brannegan veröffentlichte ein Kapitel mit dem Titel „Extraktionstechniken bei erhöhten Temperatur- und Druck-Einflüssen“ im Probenvorbereitungsteil von Pharmaceutical Dosage Forms: Herausforderungen und Strategien. Die Anwendung der MASE kann eine schnelle Fehlersuche bei niedrigen Ergebnissen erleichtern. Es können viele Proben gleichzeitig unter Rührung und erhöhten Temperaturen mittels MASE extrahiert werden. Das Kapitel enthält Fallstudien, die die Vorteile der MASE dokumentieren.

RoHS/WEEE: Die Verabschiedung der Richtlinien und Verordnung „Restriction of Hazardous Substances (RoHS) sowie Abfälle aus der Elektro- und Elektronik-Altgeräten (WEEE)“ durch die Europäischen Union (EU) ergab ein Problem. Während für die Messung der Schwermetalle Pb, Cd, Hg und Cr (VI) der Mikrowellen-Aufschluss eine etablierte Methode darstellt, gab es keine zuverlässige und kostengünstige Methode zur Prüfung der Additive polybromierte Biphenyle (PBB) und polybromierte Diphenylether (PBDE). NSL Analytical löste das Problem durch die Entwicklung einer MASE Technik zur Extraktion von PBB und PBDE aus Polymeren mit nachfolgender Analyse durch GC-MS. Die Einsparungen an Zeit und Kosten (Arbeit, Lösungsmittelkosten und Entsorgung) durch die Mikrowellenmethode MASE waren enorm, während 99%ige Wiederfindung der Additive PBB und PBDE aus Probengrößen von nur 0,5 g ermöglicht wurde.

Microwave Extraction von PBB und PBDE

Zukunft: Die aktuelle Forschung auf sequentiellen Systemen wie dem Discover, beinhaltet die Extraktion mit anschließender Derivatisierung von Fettsäuremethylestern (FAME) in einer Vielzahl von Lebensmittelproben sowie die Aminosäure Hydrolyse für zur Qualitätssicherung von Milch und Säuglingsnahrung. Mit immer wiederkehrenden Betrugsfällen bei der Lebensmittelsicherheit, ist es wahrscheinlich, dass diese Technik in den kommenden Jahren weiter ausgebaut wird. Weitere Forschungsschwerpunkte sind die Extraktion von Azofarbstoffen aus Textilien, die seit dem Jahr 2003 in Europa verboten worden sind.

FAMEs-solution_highresolution

Neue Grenzwerte für PAK in Spielzeug und Co.

Spielzeug, Mousepads, Gartenhandschuhe – für Gummi- oder Kunststoffprodukte gelten seit Ende 2015 EU-weit neue Grenzwerte für krebserregende Polycyclische Aromatische Kohlenwasserstoffe (PAK).

Gummi- oder kunststoffhaltige Erzeugnisse dürfen demnach nur noch 1 mg/kg eines der acht krebserregenden PAK enthalten. Spielzeug und Babyartikel werden noch strenger reguliert: Hier gilt ab sofort der Grenzwert von 0,5 mg/kg. Polyzyklische Aromatische Kohlenwasserstoffe (PAK) sind krebserregend, können das Erbgut verändern und haben fortpflanzungsgefährdende Eigenschaften. Sie können in der Umwelt schlecht abgebaut werden und reichern sich in Organismen an. Seit dem 27.12.2015 gelten die neuen Grenzwerte EU-weit, die Beschränkung gilt auch für Importartikel. Hersteller und Importeure müssen jetzt sicherstellen, dass die neuen Grenzwerte eingehalten werden.

sourceimage

Leider lassen sich Produkte mit PAK nicht einfach am Aussehen erkennen. Wenn sie aber deutlich unangenehm riechen, ist Vorsicht beim Kauf geboten, berichtet das Umwelt-Bundesamt. Verströmen Produkte einen starken, ölartigen Geruch, kann dies auf eine PAK-Belastung hinweisen. Schwarzer Gummi oder Kunststoff kann mit PAK-haltigem Industrieruß eingefärbt sein. Güte- oder Qualitätssiegel wie beispielsweise das freiwillige GS-Zeichen bieten eine gewisse Orientierung. Mit dem GS-Zeichen versehene Produkte aus Gummi oder Kunststoff dürfen je nach Verwendungszweck und Hautkontaktzeit schon länger bestimmte PAK-Gehalte nicht überschreiten.

Retsch und CEM haben in Zusammenarbeit ein Verfahren vorgestellt, um schnell und einfach die Spielzeugproben aufzuarbeiten, damit anschliessend die PAKs gemessen werden können:

Extraktion_mit_Mikrowelle

 

Zusammenfassung Im Laufe der vergangenen Jahre hat sich die mikrowellenbeschleunigte Lösemittelextraktion MASE für Umwelttests gut durchgesetzt. Die Zulassung durch die EPA, ASTM, CPSC und auch durch europäische Institutionen bestätigen diese Technik als zuverlässige analytische Methode. Die Kombination von hohem Probendurchsatz, enormer Lösungsmittelersparnis und Benutzerfreundlichkeit machen die MASE zu einer Alternative gegenüber anderen Extraktionstechniken.

mehr…

Das LabXpress beschleunigt die langwierigen Filtrationszeiten von Königswasseraufschlüssen, Lösemittelextraktionen, wässrigen Eluaten und feinpulverisierten Extrakten um bis zu 80 %.  CIMG2152

Die Beschleunigung des Filtrationsvorganges erfolgt durch einen leichten Überdruck. Unterschiedliche Filtermaterialien (z. B. Quarzfaser oder Cellulose) und unterschiedliche Porengrößen (0,3 µm, 2-3 µm, 8-10 µm und 19-26 µm) können verwendet werden.  CIMG2159

Das System fasst bis zu 20 Filter auf dem Drehteller.

Movie

Elaine_LabXpress

 

Broschüre LabXpress