Tag: Batterie

Lithium-Ionen-Batterien begleiten uns überall, jeden Tag, die ganze Zeit. Von unseren Telefonen über unsere Laptops bis hin zu unseren Uhren und Fahrzeugen sind diese Energiequellen zu einem festen Bestandteil unseres Lebens geworden. Die Nachfrage nach Lithium und anderen Metallen, die für die Herstellung von Lithiumbatterien benötigt werden, nimmt im Rahmen der Elektromobilität weiter zu. Die Bestimmung der Reinheit der Anoden- und Kathodenmaterialien sowie der Lithiumquellen ist entscheidend. CEM hat Aufschlussmethoden im neuen Mikrowellen-Aufschlussgerät Blade entwickelt, die schnell und einfach einen Aufschluss dieser Probenarten für die anschließende Elementanalytik liefern. Die hohen Temperaturen und enorm hohe Mikrowellendichte, die durch den Mikrowellenaufschluss im Blade erreicht werden, bieten aggressivere Bedingungen im Vergleich zur konventionellen Aufschlusstechnik. Dies führt zu einer genaueren Spurenelementanalyse, die für diese Industrie von entscheidender Bedeutung ist. Lithiumerze, Salze, Kathoden- und Anodenmaterialien sowie ein recyceltes Kathodenmaterial (Black Mass) werden im Blade aufgeschlossen.

 

Einleitung

Lithium wird als das weiße Gold der Elektrofahrzeuge bezeichnet. Die Lithiumbatterieindustrie wurde erstmals in den 1960er Jahren von der NASA entwickelt. Im Jahr 1985 entwickelte der japanische Chemiker Akira Yoshino spezielle Lithium-Ionen-Akkus, was zu einer stabileren und sichereren Version der Batterietechnologie führte. 2019 wurde Yoshido dafür mit dem Nobelpreis geehrt. Die größten Produzenten von Lithium sind Australien, China, Chile und Argentinien. Das Lithium aus Australien stammt aus dem Erzbergbau, in Chile und Argentinien kommt das Lithium aus Salzwüsten, so genannten Salaren. Die Rohstoffgewinnung aus Salaren funktioniert so: Lithiumhaltiges Salzwasser aus unterirdischen Seen wird an die Oberfläche gebracht und als Sole in großen Becken verdunstet. Die verbleibende Salzlösung wird über mehrere Stufen weiterverarbeitet, bis das Lithium zum Einsatz in Batterien geeignet ist. Diese Solen liefern aufgrund ihrer relativ niedrigen Produktionskosten etwa drei Viertel der weltweiten Lithiumproduktion. Die Solen sind eine Kombination von Salzen, zu denen Natrium und Kalium gehören. Es ist gut dokumentiert, dass Natrium dazu führen kann, dass Batterien überhitzen und sogar Feuer fangen, was ein Sicherheitsproblem darstellt. Andere Metallverunreinigungen können zu Leistungseinbußen führen. Damit sich die Batterietechnologie weiter verbessern kann, müssen Wissenschaftler und Ingenieure die Zusammensetzung der Rohstoffe sowie der Zwischen- und Fertigprodukte besser kontrollieren können. Dies erfordert präzise Messungen der Elementgehalte bei niedrigeren Nachweisgrenzen.

 

Batteriematerialien

Eine Lithium-Ionen-Batterie (siehe Abbildung 1) besteht aus vier Hauptkomponenten: der Anode, der Kathode, einer Elektrolytlösung und einem Separator. Die Anode basiert typischerweise auf Graphit und speichert die Lithiumionen in der Batterie. Die Kathode ist die Energiequelle der Batterie und besteht aus Lithiumoxid, das mit Metall (oder Metallen) dotiert ist, um die Batteriekapazität und Lebensdauer zu optimieren. Die häufigsten Kathodenmaterialien sind Lithium-Eisenphosphat (LFP), Lithium-Nickel-Mangan-Kobaltoxid (NMC), Lithium-Kobaltoxid (LCO) und Lithium-Nickel-Kobalt-Aluminiumoxid (NCA). Eine Elektrolytlösung liefert das Medium, um die Migration von Ionen zu ermöglichen, und besteht aus Salzen, Lösungsmitteln und anderen Additiven. Schließlich ist der Separator eine spezielle Polymerbarriere zwischen Anode und Kathode. Jeder von ihnen erfordert eine Spurenmetallanalyse auf Verunreinigungen.

Schema Ionen Akku

 

 

Analytik

Für die atomspektrometrische Elementanalytik ist ein Aufschluss zwingend notwendig. Das modernste Mikrowellen-Aufschlussgerät Blade (Abbildung 2) wurde extra für unterschiedliche, schwierig aufzuschließende Proben entwickelt. Somit ist es ideal für die einzelnen Batteriebestandteile sowie das Recyclingmaterial der Lithium-Ionen-Batterien (Black Mass) einsetzbar.

blade_gallery_image_5

 

Das neue Blade Mikrowellen-Aufschlussgerät

Das Blade setzt einen neuen Gold-Standard hinsichtlich Schnelligkeit, Einfachheit und Bedienerkomfort. Hinzu kommt die einzigartige Beobachtung der Aufschlussreaktion mit der eingebauten Kamera zur Optimierung des Aufschlusses. Die wesentlichen Unterschiede zu herkömmlichen Mikrowellen-Aufschlussgeräten sind:

  1. Einfachheit: Keine Verschraubungen oder Werkzeugmontage für die Druckbehälter
    Im Blade werden die Druckbehälter mit einem Schnappdeckel verschlossen. Den Rest erledigt das Gerät. Kein Verschrauben, kein Werkzeug, keine Stützmäntel, keine weitere Montage nötig

  

  1. Schnelligkeit: Aufschlüsse in wenigen Minuten

Die Aufschlussgeschwindigkeit liegt bei herkömmlichen Mikrowellen-Aufschlussgeräten bei gut einer Stunde zuzüglich der Abkühlung auf Raumtemperatur zur Weiterverarbeitung der Proben. Im Blade reichen typischerweise wenige Minuten inklusive Abkühlung für einen Aufschluss. Dann kann die Probe im ICP vermessen werden.

 

  1. Vielseitigkeit: Alle Proben sind möglich

Im Laboralltag fallen ständig unterschiedliche Proben an, die flexibel abgearbeitet werden sollen. Im Blade werden alle Proben individuell mit den geeigneten Säuren und Programmen abgearbeitet.

 

  1. Geringer Platzbedarf

Das Blade benötigt wenig Stellfläche und auch keinen Abzug, da ein leistungsstarkes Abluftsystem integriert ist. Es kann also flexibel überall aufgebaut werden.

 

  1. Beobachtung des Aufschlusses

Die integrierte Kamera sorgt für klaren Durchblick bei der Aufschlussreaktion und optimiert so klare Aufschlüsse. Durch die einzigartige Bauweise des Blades können Aufschlussverläufe erstmals sichtbar gemacht werden und vereinfachen so die Methodenoptimierung.

Film: Aufschluss von Graphit

  1. Automatisierbarkeit

Der integrierte Autosampler des Blades erlaubt das unbeaufsichtigte Abarbeiten aller Proben auch über Nacht. Mit externen Roboterzugriffen können die Aufschlussgefäße zudem ins Blade bewegt werden sowie die Dosierung der Reagenzien erfolgen.

 

  1. Dokumentation des Aufschlussverlaufes

Zur Qualitätssicherung wird der komplette Aufschlussverlauf von jeder Probe in Echtzeit dokumentiert.

 

Mikrowellenaufschluss

Die Proben reichten von Lithiumerzen und Salzen bis hin zu Anoden- und Kathodenmaterialien. Die Lithiumerze Lepidolith und Petalit wurden ebenfalls untersucht wie das Recyclingmaterial Black Mass. Eine Kombination aus Säuren und hohen Temperaturen wird verwendet, um die Aufschlussbedingungen für diese Proben zu optimieren. Proben, die HF benötigten, erforderten einen zweiten Aufschlussschritt mit Borsäure, um säureunlösliche Fluoride wie CaF2 aufzulösen und das freie Fluorid zu binden. Die Blade Aufschlussgefäße verfügen über Teflon TFM Einsätze um das Arbeiten mit HF zu ermöglichen.

 

Beispiele: Aufgeschlossene Proben

Lithiumsalze                       NCM-Kathode                          LCO-Kathode                 LFP-Kathode

Aufgeschlossenen Proben Li Akku

 

Ausblick

Im Rahmen der Mobilitätswende weg vom Verbrennungsmotor hin zu neuen Antrieben bekommt die Analytik von Bestandteilen der Brennstoffzelle eine analoge Bedeutung zu den Batteriebestandteilen. Diese Materialien können ebenfalls im Blade schnell und einfach

Im Rahmen der Elektromobilität wird die Entwicklung leistungsstarker Batterien/Akkus für eine hohe Reichweite der Autos immer wichtiger. Hierfür werden Graphitproben der Akkus analytisch untersucht. Ein Mikrowellenaufschluss wird dabei der spektrometrischen Elementanalyse mittel ICP-OES oder ICP-MS vorgeschaltet. Im neuen Mikrowellen-Aufschlussgerät Blade kann der Aufschluss schnell und bequem in den hochreinen Quarzgefäßen durchgeführt werden und der Aufschlussfortschritt wird mit der eingebauten Kamera visuell verfolgt. Damit wird eine Methodenentwicklung für derartig schwierig aufzuschließende Proben wie Graphit deutlich einfacher. Durch das automatisierte Arbeiten im Blade können nun Proben über Nacht oder sogar am Wochenende aufgeschlossen werden.

https://www.youtube.com/watch?v=MYylhflhuT8

#Elektromobilität #Mikrowellenaufschluss #Graphitanalytik #Elementanalytik #Atomspektrometrie #Probenvorbereitung