Die Sulfatasche-Bestimmung ist ein wichtiger Kontrollparameter bei der Qualitätskontrolle laufender Produktionen und der Eingangskontrolle von Rohstoffen. Problematisch ist jedoch die Zeitintensität der Analyse, da das Ergebnis erst Stunden später vorliegt und somit ein schnelles Eingreifen in die laufende Produktionsabläufe verhindert. Einen Zeitvorteil schafft die in diesem Artikel vorgestellte Methode mit dem schnellsten Muffelofen der Welt – Phönix SAS, die das Ergebnis unter der Berücksichtigung aller relevanten Normen innerhalb von kurzer Zeit liefert. Zudem können kritische Proben, die unter klassischen Bedingungen spritzen und schäumen und somit viel Handarbeit beinhalten, mit dem Phönix SAS problemlos schnell und automatisch bearbeitet werden.
Historie
Die Bestimmung der bei der Verbrennung von organischen Substanzen auftretenden Rückstände zählt schon seit neun Jahrzehnten zu den elementaren Reinheitsprüfungen von Arzneistoffen. Bereits das DAB 5 (Deutsches Arzneimittelbuch) von 1910 und das DAB 6, das 1926 in Kraft trat, enthielten weitgehend gleichlautende Vorschriften zur Durchführung von Analysen zur Bestimmung des Aschegehaltes. Mit dem dritten Nachtrag zum DAB 6 wurde 1959 die Prüfung der Sulfatasche als neue Analysenmethode in die pharmazeutischen Laboratorien eingeführt. Analoge Entwicklungen fanden beim Japanischen Arzneimittelbuch, bei den amerikanischen Vorschriften USP und beim Eurpäischen Arzneibuch Ph. Eur. statt. Die Bestimmung des Sulfatasche Gehaltes hat sich seitdem bei Eingangskontrollen von Rohstoffen und bei der Qualitätssicherung von laufenden Produktionen einen Platz als wichtige analytische Kenngröße gesichert. In den letzten Jahren wurden auch für Mineralölprodukte, Kautschuk, PVC, Elastomere und eine Vielzahl von Kunststoffen die Sulfatasche als wichtige Analysenmethode zur QS vorgeschrieben (DIN 53568, Teil 2 sowie ISO 247, Rubber – Determination of ash).
Die schwarze Masse kocht und brodelt. Das weiße Porzellanschälchen vibriert leicht auf dem Tisch aus Draht. Die gelblich gefärbten Flammen heizen ihm ordentlich ein. Feucht ist die Luft und rundherum regnet es pechschwarzen Ruß. Diese eher unheimliche Szene beschreibt nichts anderes als den relativ einfachen Prozess der Sulfatveraschung. Unter Veraschungen versteht man per Definition die thermische Zersetzung kohlenwasserstoffhaltiger Produkte, wobei die anorganischen Bestandteile zurück bleiben.
Die Sulfataschebestimmung ist bedingt durch die einzelnen Arbeitsschritte ein mühseliger und langwieriger Prozess und zudem für den Bediener äußerst unangenehm. Das Probengut wird dabei in einem Porzellan- oder Platintiegel mit Schwefelsäure versetzt, danach auf offener Flamme vorverascht und anschließend im konventionellen Muffelofen bei ca. 600 °C bzw. 800 °C (je nach Vorschrift) verascht. Neben den aufwendigen Arbeitsschritten (dauert bis zu 12 h) ist das Handling mit der abrauchenden Schwefelsäure äußerst umständlich und gesundheitsbeeinträchtigend. Durch unterschiedliche Bediener wurden auch schwankende Ergebnisse bei Mehrfachbestimmungen beobachtet. Nach der Beendigung des Schwefelsäureabrauchens sind vielfach aufwendige Reiningsarbeiten am Abzug vorzunehmen. Besonders bei schäumenden, quellenden und spritzenden Proben muß der Anwender die Reaktion beobachten, rechtzeitig den Tiegel von der Flamme wegziehen und warten, bis die Probe wieder weiter bearbeitet werden kann. Verpasst der Anwender den richtigen Moment, schäumt die Probe aus dem Tiegel und die bisherige Arbeit ist zu verwerfen – sprich: die Analyse muß von vorn beginnen.
Eine Alternative bezüglich der Schnelligkeit, des Arbeitsschutzes, der Automatisation für kritische Proben und des Bedienerkomforts stellt das CEM-Sulfat-Veraschungssystem Phönix SAS dar. Die komplette Veraschung inklusive Vorveraschung wird im Veraschungssystem Phönix SAS durchgeführt, d. h. einfachstes und vor allem sicheres Handling für den Anwender. Durch die „Ofen-im-Ofen-Technik“ des Phönix SAS in Kombination mit einer Absaugung der Schwefelsäuredämpfe aus dem Veraschungseinsatz wird eine doppelte Absaugung der teilweise toxischen Verbrennungsprodukte gewährleistet. Die Veraschungsdauer verkürzt sich deutlich auf ca. 60 Minuten bei gleichzeitiger Veraschung von bis zu 15 Proben. Dabei wird die Probe im Tiegel mit H2SO4 versetzt und in den Phönix SAS gegeben. Mit dem Start der Methode heizt das Phönix SAS innerhalb von 10 min. auf 250 °C auf und hält diese Temperatur präzise für 10 Minuten konstant. Während dieser Zeit findet die Vorveraschung im Mikrowellenofen statt. Anschließend erfolgt automatisch die weitere Erhitzung auf 600 °C (bzw. 800 °C) statt, die dann für 20 min. konstant gehalten wird. Durch die genauen und reproduzierbaren Temperaturrampen kann ein Verspritzen oder Überschäumen von kritischen Proben verhindert werden.
Die besondere Arbeitssicherheit und der Bedienerkomfort des Phönix SAS wird durch eine spezielle Absaugtechnik gewährleistet, die CEM auch in anderen Produkten erfolgreich verwendet. Dabei führt aus dem Veraschungseinsatz mit den zu bearbeitenden Proben ein Quarzrohr zu einer Abscheide- und Neutralisationseinrichtung, bestehend aus Waschflaschen und Aktivkohlefilter. Die Rauchgase werden dabei mittels einer Vakuumpumpe abgesaugt und in den Waschflaschen mit NaOH neutralisiert. Der Bediener ist dabei keiner Exposition mit den Verbrennungsprodukten ausgesetzt und durch die Aktivkohlefilter zudem vor Geruchsbelästigungen geschützt. Die Anordnung dieser Neutralisationseinrichtung ist wartungsarm und einfach zu bedienen. Damit werden die Anforderungen der ISO 14000 zur Emissionsverminderung erfüllt. Die Raumluft und somit auch der Anwender werden nicht belastet (Arbeitsschutz) und die Installation braucht unter keinem Abzug zu erfolgen. Für die unterschiedlichen Applikationen steht eine Vielzahl von Zubehör, z. B. spezielle Veraschungstiegel oder eine Temperatur-Kalibriereinheit für die Prüfmittelüberwachung (IQ & OQ) zur Verfügung.
Studie an kritischen Proben
C. Hinz untersuchte spezielle Proben, die unter klassischen Bedingungen mit Vorveraschung und konventionellem Muffelofen schäumen, spritzen und aus dem Tiegel quellen. Als Modelsubstanzen wurden Laktose, Azelainsäure, Megestrolacetat und Phthalazin ausgewählt.
Es wurde eine Methode für das Phönix SAS ausgearbeitet, bei der jede Probe mit Schwefelsäure versetzt wird und direkt bei Raumtemperatur in den Phönix Ofen gegeben wird. Anschließend wird im Phönix SAS automatisch ohne manuelle Arbeit die Probe mit der Säure langsam auf 550 °C erhitzt und dabei vorverascht. Danach erfolgt das weitere Aufheizen auf die Endtemperatur von 600 °C und die Veraschung findet bis zur Gewichtskonstanz statt. Alle Modellsubstanzen werden ohne Probenverlust durch spritzen, schäumen oder quellen sanft im Phönix Muffelofen verascht.
Movie Re-Qualifikation IQ/OQ
Movie Platin-Tiegel können eingesetzt werden
Seit dem Ende der 90er Jahre hat die United States Environmental Protection Agency (US-EPA) die Verwendung der SW-846 Methode 3546 für die Extraktion von unterschiedlichen organischen Verbindungen aus festen Matrizen mit MASE (mikrowellenbeschleunigte Lösemittel Extraktion) untersucht. In den letzten 15 – 20 Jahren haben die Anwendungen für diese Technik deutlich zugenommen und die Gerätetechnik wurde hinsichtlich des Bedienerkomforts und des Probendurchsatzes weiter entwickelt. Die Beschreibung eines mikrowellenbeschleunigten Lösemittel-Extraktionsverfahren (Methode 3546) wurde im Jahr 2008 abschließend reguliert. Dabei wird eine feste Probe mit einem Lösungsmittelgemisch in einem verschlossenen (geschlossenen) Behälter mit Mikrowellenenergie unter temperaturgeregelten Bedingungen erwärmt. Die Temperatur wird deutlich über den atmosphärischen Siedepunkt des Lösungsmittels erhöht und dadurch wird die Extraktion beschleunigt. Die Zeitverkürzung geht von typischerweise vielen Stunden im Soxhlet hin zu wenigen Minuten im Mikrowellensystem. Der Lösemittelverbrauch bei der mikrowellenbeschleunigten Extraktion beträgt nur 25 bis 50 ml pro Probe und spart somit enorm Kosten ein. Typische Analyten sind: Pestizide und Herbizide, PAKs und PCBs, Phenole, Dioxine und Furane
Akinlua, A., Jochmann, M. A., & Schmidt, T. C. (2015). Ionic Liquid as Green Solvent for Leaching of Polycyclic Aromatic Hydrocarbons from Petroleum Source Rock. Industrial & Engineering Chemistry Research, 54(51), 12960–12965. doi:10.1021/acs.iecr.5b03367 beschreiben den Einsatz der Mars 6 Mikrowelle zur schnellen Extraktion von PAHs
Die American Society for Testing and Materials (ASTM) ist eine internationale Standardisierungsorganisation, die für 3 Verfahren ebenfalls die Mikrowelle als Probenvorbereitungsmethode standardisiert hat:
• ASTM 5765-05 (2010) ist die Standardmethode zur Lösungsmittelextraktion von TPH (Mineralöl-Kohlenwasserstoffe) aus Böden und Sedimenten. Die Bodenprobe oder die Sedimentprobe wird mit Aceton oder Hexan in einem verschlossenen Gefäß mit Mikrowellenerwärmung auf eine Extraktionstemperatur von 150 ° C gebracht, um einen Extrakt zur Analyse durch Gaschromatographie (GC) oder Gravimetrie zu erhalten.
• ASTM D6010-12 ist die Standardmethode für organischen Verbindungen aus festen Matrices. Die Boden-, Sediment-, Schlamm- oder Abfallprobe wird bei 115 ° C in einem Aceton-Hexan-Gemisch extrahiert, um anschließend halbflüchtige oder flüchtige organische Verbindungen durch GC oder GC-MS analysieren. Diese Methode reduziert die Probenvorbereitungszeit, den Lösungsmittelverbrauch und die Betriebskosten.
• ASTM D7210-13 ist die Standardmethode für die Extraktion von Additiven/Zusatzstoffen in Polyolefin-Kunststoffen. Dabei werden phenolische Antioxidantien, Phosphit-Antioxidantien, UV-Stabilisatoren, antistatische Mittel und Gleitmittel aus gemahlenen Polyolefin-Kunststoffen extrahiert und anschließend analysiert. Phthalate werden hauptsächlich als Weichmacher verwendet, um die Flexibilität und Haltbarkeit eines Produktes zu erhöhen, stehen aber im Verdacht der Gesundheitsgefährdung. Die Consumer Product Safety Commission (CPSC) hat die Testmethode: CPSC-CH-C1001-09.3 zur Bestimmung der Phthalate im April 2010 herausgegeben. Damit werden Phthalate in Kinderspielzeug und Babyartikeln analysiert. Das Testverfahren verwendet eine Mikrowellen-Extraktion basierend auf der EPA-Methode 3546 an.
Das Prinzip der MASE, mikrowellenbeschleunigten Lösemittelextraktion
Die Extraktionsmethode umfasst das Erhitzen einer festen Probe mit einem Lösungsmittel mittels Mikrowellenenergie um die Extraktionsgeschwindigkeit zu beschleunigen. Die Extraktion wird üblicherweise in einem geschlossenen Gefäß unter temperaturgeregelten Bedingungen durchgeführt. Dies stellt eine signifikante Temperaturerhöhung über dem atmosphärischen Siedepunkt des Lösungsmittels dar und beschleunigt die Extraktionskinetik deutlich. Die dazu erforderlichen Geräte unterscheidet man in Multi-Mode- und Mono-Mode-Mikrowellengeräte. Moderne Multi-Mode Mikrowellengeräte wie das Mars 6 vermögen eine große Anzahl gleichzeitiger Extraktionen durchzuführen. So können bis zu 40 Proben mit den Xpress Extraktionsbehältern in kurzer Zeit gleichzeitig extrahiert werden. Das Mars 6 besitzt eine Bibliothek mit vordefinierten Methoden und die Software hat die Fähigkeit, die Anzahl der Proben zu zählen und den Behältertyp automatisch zu erkennen. Somit kann die Extraktion mit nur einem Knopfdruck – „One-Touch“ gestartet werden.
Frühere Extraktionsbehälter bestanden aus vielen Baugruppen, die eher schwerfällig zu montieren waren und zudem konnten nur 12 bis 14 Proben gleichzeitig bearbeitet werden. Zum Verschluss der Behälter wurde ein Drehmomentschlüssel verwendet. Die neueste Extraktionsbehälter Technologie im Mars 6 hat jetzt nur noch drei Komponenten – ein Gefäßkörper, eine Kegeldichtung und eine Kappe – das vereinfacht die Montage der Xpress Behälter ganz ohne Werkzeug.
Mono-Mode-Mikrowellengeräte arbeiten die Extraktionen sequentiell nacheinander ab wie z. B. das Discover. Das Discover besteht aus einer Mikrowellenkammer mit einem relativ kleinen „fokussierten“ Hohlraum und häufig aus einem Autosampler. Damit werden die Proben in typischerweise nur 10 min. extrahiert und es können unterschiedlich Proben nacheinander schnell abgearbeitet werden. Dieser sequentielle Ansatz im Discover bietet mehr Flexibilität als bei einem Batch-style-System wie dem Mars 6.
Beide Systeme extrahieren mittels Mikrowellenenergie die Proben-Lösungsmittelgemische bei erhöhter Temperatur und Druck, unter kontrollierten Bedingungen mit Rühren. Das Discover kann aber aufgrund seiner Konzeption auch mit Multi-Purpose-Autosamplern und Chromatographiegeräten wie GC oder HPLC gekoppelt werden.
Quecksilber Speziation: Die Gesamtquecksilberkonzentration in einer Probe gibt kein genaues Bild für ihre Wirkung in der Umwelt. Die genaue Verteilung der Quecksilberspezies gibt ein verbessertes Verständnis mit entsprechenden Schlussfolgerungen zur Bioverfügbarkeit, Verteilung in der Nahrungskette, Toxizität usw. Im Jahr 2013 veröffentlichten Leng und Mitarbeiter einen Artikel mit dem Titel „Spezies Analyse von Quecksilber in Sedimenten durch HPLC nach Mikrowellenunterstützter Extraktion“. Die Autoren beschreiben die Kombination von mikrowellenunterstützter Extraktion der Proben mit anschließender HPLC-VGAFS Bestimmung. Es wurden ausreichend niedrige Nachweisgrenzen von MeHg +, EtHg + und Hg2 + in Sedimentprobe erzielt. Die Nachweisgrenzen waren 0,013 ug / L, 0,022 ug / l und 0,011 ug / L für die einzelnen Quecksilberspezies. Die Methode wurde anhand von zwei zertifizierten Referenzmaterialien IAEA-405 und ERM-CC580 überprüft,- die gute Übereinstimmungen mit dem zertifizierten Wert ergaben.
Anti-Oxidantien: Es gibt mögliche positive Beeinflussungen der Gesundheit durch antioxidative Verbindungen, die das Risiko von Herz-Kreislauf-Erkrankungen und bestimmten Krebsarten senken. Im Jahr 2011 untersuchten Mathur und Mitarbeiter die MASE im Vergleich zu herkömmlichen Lösungsmittelextraktionstechniken für das Screening von Pflanzenextrakten hinsichtlich der antioxidativen Aktivität. Bei einer Extraktionstemperatur von 80 °C mit einer 20 minütigen Haltezeit wurde mit Methanol als Extraktionslösungsmittel die MASE Technik an 20 g Pflanzenproben optimiert. Die Extrakte wurden für invitro antioxidative Aktivitäten gescreent. Die Ergebnisse zeigten, dass die gewonnenen Extrakte aus der MASE Technik eine stark antioxidative Aktivität im Vergleich zu den Extrakten der traditionellen Methode aufweisen.
Active Pharmaceutical Ingredients: Die Freisetzung von pharmazeutischen Wirkstoffen (APIs) aus festen Darreichungsformen ist innerhalb der Formulierungen zu validieren. Brannegan veröffentlichte ein Kapitel mit dem Titel „Extraktionstechniken bei erhöhten Temperatur- und Druck-Einflüssen“ im Probenvorbereitungsteil von Pharmaceutical Dosage Forms: Herausforderungen und Strategien. Die Anwendung der MASE kann eine schnelle Fehlersuche bei niedrigen Ergebnissen erleichtern. Es können viele Proben gleichzeitig unter Rührung und erhöhten Temperaturen mittels MASE extrahiert werden. Das Kapitel enthält Fallstudien, die die Vorteile der MASE dokumentieren.
RoHS/WEEE: Die Verabschiedung der Richtlinien und Verordnung „Restriction of Hazardous Substances (RoHS) sowie Abfälle aus der Elektro- und Elektronik-Altgeräten (WEEE)“ durch die Europäischen Union (EU) ergab ein Problem. Während für die Messung der Schwermetalle Pb, Cd, Hg und Cr (VI) der Mikrowellen-Aufschluss eine etablierte Methode darstellt, gab es keine zuverlässige und kostengünstige Methode zur Prüfung der Additive polybromierte Biphenyle (PBB) und polybromierte Diphenylether (PBDE). NSL Analytical löste das Problem durch die Entwicklung einer MASE Technik zur Extraktion von PBB und PBDE aus Polymeren mit nachfolgender Analyse durch GC-MS. Die Einsparungen an Zeit und Kosten (Arbeit, Lösungsmittelkosten und Entsorgung) durch die Mikrowellenmethode MASE waren enorm, während 99%ige Wiederfindung der Additive PBB und PBDE aus Probengrößen von nur 0,5 g ermöglicht wurde.
Microwave Extraction von PBB und PBDE
Zukunft: Die aktuelle Forschung auf sequentiellen Systemen wie dem Discover, beinhaltet die Extraktion mit anschließender Derivatisierung von Fettsäuremethylestern (FAME) in einer Vielzahl von Lebensmittelproben sowie die Aminosäure Hydrolyse für zur Qualitätssicherung von Milch und Säuglingsnahrung. Mit immer wiederkehrenden Betrugsfällen bei der Lebensmittelsicherheit, ist es wahrscheinlich, dass diese Technik in den kommenden Jahren weiter ausgebaut wird. Weitere Forschungsschwerpunkte sind die Extraktion von Azofarbstoffen aus Textilien, die seit dem Jahr 2003 in Europa verboten worden sind.
Neue Grenzwerte für PAK in Spielzeug und Co.
Spielzeug, Mousepads, Gartenhandschuhe – für Gummi- oder Kunststoffprodukte gelten seit Ende 2015 EU-weit neue Grenzwerte für krebserregende Polycyclische Aromatische Kohlenwasserstoffe (PAK).
Gummi- oder kunststoffhaltige Erzeugnisse dürfen demnach nur noch 1 mg/kg eines der acht krebserregenden PAK enthalten. Spielzeug und Babyartikel werden noch strenger reguliert: Hier gilt ab sofort der Grenzwert von 0,5 mg/kg. Polyzyklische Aromatische Kohlenwasserstoffe (PAK) sind krebserregend, können das Erbgut verändern und haben fortpflanzungsgefährdende Eigenschaften. Sie können in der Umwelt schlecht abgebaut werden und reichern sich in Organismen an. Seit dem 27.12.2015 gelten die neuen Grenzwerte EU-weit, die Beschränkung gilt auch für Importartikel. Hersteller und Importeure müssen jetzt sicherstellen, dass die neuen Grenzwerte eingehalten werden.
Leider lassen sich Produkte mit PAK nicht einfach am Aussehen erkennen. Wenn sie aber deutlich unangenehm riechen, ist Vorsicht beim Kauf geboten, berichtet das Umwelt-Bundesamt. Verströmen Produkte einen starken, ölartigen Geruch, kann dies auf eine PAK-Belastung hinweisen. Schwarzer Gummi oder Kunststoff kann mit PAK-haltigem Industrieruß eingefärbt sein. Güte- oder Qualitätssiegel wie beispielsweise das freiwillige GS-Zeichen bieten eine gewisse Orientierung. Mit dem GS-Zeichen versehene Produkte aus Gummi oder Kunststoff dürfen je nach Verwendungszweck und Hautkontaktzeit schon länger bestimmte PAK-Gehalte nicht überschreiten.
Retsch und CEM haben in Zusammenarbeit ein Verfahren vorgestellt, um schnell und einfach die Spielzeugproben aufzuarbeiten, damit anschliessend die PAKs gemessen werden können:
Zusammenfassung Im Laufe der vergangenen Jahre hat sich die mikrowellenbeschleunigte Lösemittelextraktion MASE für Umwelttests gut durchgesetzt. Die Zulassung durch die EPA, ASTM, CPSC und auch durch europäische Institutionen bestätigen diese Technik als zuverlässige analytische Methode. Die Kombination von hohem Probendurchsatz, enormer Lösungsmittelersparnis und Benutzerfreundlichkeit machen die MASE zu einer Alternative gegenüber anderen Extraktionstechniken.
Das LabXpress beschleunigt die langwierigen Filtrationszeiten von Königswasseraufschlüssen, Lösemittelextraktionen, wässrigen Eluaten und feinpulverisierten Extrakten um bis zu 80 %.
Die Beschleunigung des Filtrationsvorganges erfolgt durch einen leichten Überdruck. Unterschiedliche Filtermaterialien (z. B. Quarzfaser oder Cellulose) und unterschiedliche Porengrößen (0,3 µm, 2-3 µm, 8-10 µm und 19-26 µm) können verwendet werden.
Das System fasst bis zu 20 Filter auf dem Drehteller.
Die Autoren J. Neßler, F. Focke, M. Opel und J. Fritsche untersuchen den Vergleich der Soxhlet Extraktion mit der Mikrowellen Extraktion von Ei im Discover.
Aufgrund ihrer lipophilen Eigenschaft treten PCDD/PCDF und PCB vermehrt in tierischem Fettgewebe und in Fettbestandteilen tierischer Lebensmittel, wie z.B. Fisch, Eier und Milch auf. Demnach besteht die Möglichkeit PCDD/PCDF und PCB anhand der Fettextraktionsmethode aus der Matrix zu extrahieren. Das Ziel ist die Entwicklung einer mikrowellenunterstützten Extraktionsmethode, die im Hinblick auf die Extraktionszeit und Kosten (Energie- und Materialbedarf) Vorteile gegenüber der Soxhletextraktion besitzt. Die Ergebnisse der mikrowellenunterstützten Extraktion werden mit den Ergebnissen der Soxhlet Extraktion verglichen.
Was steckt in der Wurst? Diese Fragestellung beantwortet der WDR in seiner Sendung Quarks & Co im März 2015
Im Chemischen und Veterinäruntersuchungsamt in Krefeld kommt der Phönix Muffelofen zur Bestimmung des Salzgehaltes in der Wurst zum Einsatz.
Für die Rußanalyse (z. B. in Gummi) sind selbstabdichtende Spezialtiegel verfügbar. Hierbei wird unter Sauerstoffausschluß die Probe verascht. Der schnellste Muffelofen der Welt Phönix ermöglicht die rasche Bestimmung von Ruß- und Kohlefasern sowie Carbon-Nanotubes in Polymeren. Damit werden auch schnelle Eingriffe in die Produktion möglich. Der Kunststoff-Schnellverascher Phönix MIV von der CEM GmbH aus Kamp-Linfort, ermöglicht in einer Inertgas-Atmosphäre die schnelle Veraschung einer Vielfalt von unterschiedlichen Kunststoffen und Kautschuk zur Bestimmung des Ruß- beziehungsweise Kohlefaseranteils und des Gehaltes an Carbon-Nanotubes.
Das Resultat: Was früher Stunden brauchte, wird jetzt in Minuten erreicht. Die Einsatzgebiete für derartige Kunststoffcompounds sind typischerweise im Flugzeug- und Automobilbau zu finden, etwa in Stoßstangen, Zierleisten, Armaturen, Fertigteilen, Wannen oder Abdeckungen.
In einer Inertgas-Atmosphäre veraschen Kunststoff und Kautschuk, Füllstoffe wie Ruß, Kohlefaser oder Carbon-Nanotubes bleiben zur Analyse zurück.
Da die Werkstoffeigenschaften eines Kunststoffcompounds wesentlich von seinem Füllstoffgehalt abhängen, ist eine Schnellbestimmung der Füllstoffe wie Ruß, Kohlefaser oder Carbon-Nanotubes zur effektiven Prozesskontrolle unerlässlich. Mit einem schnellen Eingreifen in die laufende Produktion können oft hohe Kosten vermieden werden.